Skip to main content

Strahlströme und atmosphärische Zirkulation

  • Chapter
  • First Online:
Unberechenbares Klima
  • 2088 Accesses


Die Arktis hat sich sowohl im Winter wie im Sommer in den vergangenen zwei Jahrzehnten deutlich erwärmt. Der troposphärische Strahlstrom, das atmosphärische Westwindband in mittleren Breiten zwischen 10 bis 12 km Höhe, wird durch den Temperaturgradienten zwischen den wärmeren Luftmassen mittlerer Breiten und den kälteren in polaren Breiten gebildet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

USD 19.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 29.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions


  • Cohen, J., et al., 2014, Recent Arctic amplification and extreme mid-latitude weather. Nature Geo. 7, 627–637,

  • Cohen, J., et al., 2020, Divergent consensuses on Arctic amplification influence on midlatitude severe winter weather, Nature Clim. Change, 10, 20–29.

    Google Scholar 

  • Crasemann, B., et al., 2017, Can preferred atmospheric circulation patterns over the North-Atlantic-Eurasian region be associated with arctic sea ice loss? Polar Science, 14, 9–20.

    Google Scholar 

  • Dethloff, K., et al., 2006, A dynamical link between the Arctic and the global climate system, Geophys. Res. Lett., 33, L03703,

  • Graham, R. M., et al., 2017, Increasing frequency and duration of Arctic winter warming events, Geophys. Res. Lett., 44, 6974–6983.

    Google Scholar 

  • Handorf, D., et al., 2017, Arctic-Mid-latitude linkages in a quasi-geostrophic atmospheric model, Adv Meteorol., 1–9.

    Google Scholar 

  • Pinto, J. G., et al., 2011, The variable link between PNA and NAO in observations and in multicentury CGCM simulations. Climate Dynamics, 36, 337–354,

  • Sempf, M., et al., 2005, Idealized modelling of the northern annular mode: orographic and thermal impacts, Atmos. Sci. Lett., 6, 140–144.

    Google Scholar 

  • Serreze, M. C., and R. G. Bary, 2005, The Arctic climate system, Cambridge University Press, 385 S.

    Google Scholar 

  • Wernli, H., and L. Papritz, 2018, Role of polar anticyclones and mid-latitude cyclones for Arctic sum-mertime sea-ice melting, Nature Geo., 11, 108–113.

    Google Scholar 


  • ECMWF ERA5 Data/ Figures 3.1, 3.2, 3.3 from Climate Reanalyzer (, Climate Change Institute, University of Maine, USA.

  • ECMWF ERA5 Data/ Figures 3.6, 3.8 from Climate Reanalyzer (, Climate Change Institute, University of Maine, USA.

  • NASA Merra Data/ Figure 3.7 from Climate Reanalyzer (, Climate Change Institute, University of Maine, USA.

  • NCEP/NCAR Reanalysis Data/ Figures. 3.4, 3.5 provided by NOAA/OAR/ESRL PSL, Boulder, Colorado, USA, from their web site at Reanalysis Data.

Download references

Author information

Authors and Affiliations


Rights and permissions

Reprints and permissions

Copyright information

© 2022 Der/die Autor(en), exklusiv lizenziert durch Springer-Verlag GmbH, DE, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dethloff, K. (2022). Strahlströme und atmosphärische Zirkulation. In: Unberechenbares Klima. Springer, Berlin, Heidelberg.

Download citation

Publish with us

Policies and ethics