Skip to main content

Komplexitätsreduktion in Klimamodellen

  • 1848 Accesses

Zusammenfassung

Gekoppelte Klimamodelle sind das beste zur Verfügung stehende Instrument zur quantitativen Abschätzung der anthropogenen Folgen menschlicher Wirtschaftstätigkeit und von Änderungen der atmosphärischen Zirkulationsmuster im Klimasystem.

This is a preview of subscription content, log in via an institution.

Buying options

eBook
USD   19.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   29.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Literatur

  • Budyko, M. I. 1968, On the origin of ice ages (russ.), Meteorol i Gidrologia, 2, 3-8.

    Google Scholar 

  • Charney, J., and J. deVore, 1979, Multiple flow equilibria in the atmosphere and blocking, 1979, J. Atmos. Sci., 1205–1216.

    Google Scholar 

  • Curry, J., 2017, Climate models for the Laymann, GWPF reports 24, 20 S.

    Google Scholar 

  • Dethloff, K., and G. Schmitz, 1992, Persistent circulation states and low-frequency variability in a nonlinear baroclinic, low-order model, Meteorol. Zeitschrift, 1, 141–154.

    Article  ADS  Google Scholar 

  • Dethloff, K., and A. Wäntig, 1986, The influence of altered exchange exchange coefficients on the climate of an energy balance model, Z. Meteorol. 36, 218–221.

    Google Scholar 

  • Dethloff, K., and G. Schmitz, 1982, On determining the tropo- and stratospheric circulation on the bsis of momentum and heat sources in a quasi-geostrophic model, Gerl. Beit. Geophys., 91, 25–34.

    Google Scholar 

  • Eyring, V., et al., 2019, Taking climate model evaluation to the next level, 2019, Nature Climate Change 9, 102–110.

    Article  ADS  Google Scholar 

  • Fraedrich, K., 1979, Catastrophes and resilience of a zero‐dimensional climate system with ice‐albedo and greenhouse feedback, Q. J. Roy. Met. Soc. https://doi.org/10.1002/qj.49710544310.

  • Grieger, N., G. Schmitz, 1982, The structure of planetary waves up to the lower mesosphere based on data analyses and model calculations, J. Geophys. Res., 87, 11255.

    Article  ADS  Google Scholar 

  • Hasselmann, K., 1976, Stochastic climate models, Part I: Theory, Tellus, 28, 473–485.

    Google Scholar 

  • Kurzke, H., et al., 2012, Simulating Southern Hemisphere extra-tropical climate variability with an idealised coupled atmosphere-ocean model, Geosci. Model Dev., 5, 1161–1175.

    Article  ADS  Google Scholar 

  • Lorenz, E. N., 1963, Deterministic nonperiodic flow, J. Atmos. Sci., 20, 130-141.

    Article  ADS  MathSciNet  Google Scholar 

  • Manabe, S., and R. F. Strickler, 1964, Thermal equilibrium oft he atmosphere with a convective adjustment, J. Atmos. Sci, 21, 361–384.

    Article  ADS  Google Scholar 

  • Manabe, S., and R. T. Wetherald, 1968, On the distribution of climate change resulting from an increase in CO2-content of the atmosphere, J. Atmos. Sci., 37, 99–118.

    Article  ADS  Google Scholar 

  • Meehl, G., et al., 2011, Model-based evidence of deep-ocean heat uptake during surface-temperature hiatus periods, Nature Climate Change, 1, 360–364.

    Article  ADS  Google Scholar 

  • Pallotta, G., and B. D. Santer, 2020, Multi-Frequency Analysis of Simulated versus Observed Variability in Tropospheric Temperature, J. Climate, https://doi.org/10.1175/JCLI-D-20-0023.s1.

  • Palmer, T., and B. Stevens, 2019, The scientific challenge of understanding and estimating climate change, PNAS, 116, 24390–24395

    Article  ADS  CAS  Google Scholar 

  • Smagorinsky, J., 1963, General Circulation Experiments with the Primitive Equations, Mon. Weather Rev.. 91, S. 99–164.

    Article  ADS  Google Scholar 

  • Stevens, B., and S. Bony, 2013, What are climate models missing?, Science, 340, S. 1053–1054.

    Article  ADS  CAS  Google Scholar 

  • Schneider, S. H., and R. E. Dickinson, 1974, Climate modeling, Rev. Geophysics, https://doi.org/10.1029/RG012i003p00447

  • Schmitz, G., and N. Grieger, 1980, Model calculations on the structure of planetary waves in the upper troposphere and lower stratosphere as a function of the wind field in the upper stratosphere, Tellus, 32, 207–214.

    Article  ADS  Google Scholar 

  • Sempf, M., et al., 2007, Toward Understanding the Dynamical Origin of Atmospheric Regime Behavior in a Baroclinic Model, J. Atmos. Sci., 64, 887–904.

    Article  ADS  Google Scholar 

  • Simpkins, G., 2017, Progress in climate modelling, Nature Clim. Change, 7, 684–685.

    Google Scholar 

  • Wunsch, C., 1999, Where do ocean heat fluxes matter? J, Geophys. Res. 104, 13235–13249

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Der/die Autor(en), exklusiv lizenziert durch Springer-Verlag GmbH, DE, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dethloff, K. (2022). Komplexitätsreduktion in Klimamodellen. In: Unberechenbares Klima. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-64900-8_12

Download citation

Publish with us

Policies and ethics