Skip to main content

Komplexitätsreduktion in Klimamodellen

  • 1848 Accesses


Gekoppelte Klimamodelle sind das beste zur Verfügung stehende Instrument zur quantitativen Abschätzung der anthropogenen Folgen menschlicher Wirtschaftstätigkeit und von Änderungen der atmosphärischen Zirkulationsmuster im Klimasystem.

This is a preview of subscription content, log in via an institution.

Buying options

USD   19.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   29.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions


  • Budyko, M. I. 1968, On the origin of ice ages (russ.), Meteorol i Gidrologia, 2, 3-8.

    Google Scholar 

  • Charney, J., and J. deVore, 1979, Multiple flow equilibria in the atmosphere and blocking, 1979, J. Atmos. Sci., 1205–1216.

    Google Scholar 

  • Curry, J., 2017, Climate models for the Laymann, GWPF reports 24, 20 S.

    Google Scholar 

  • Dethloff, K., and G. Schmitz, 1992, Persistent circulation states and low-frequency variability in a nonlinear baroclinic, low-order model, Meteorol. Zeitschrift, 1, 141–154.

    Article  ADS  Google Scholar 

  • Dethloff, K., and A. Wäntig, 1986, The influence of altered exchange exchange coefficients on the climate of an energy balance model, Z. Meteorol. 36, 218–221.

    Google Scholar 

  • Dethloff, K., and G. Schmitz, 1982, On determining the tropo- and stratospheric circulation on the bsis of momentum and heat sources in a quasi-geostrophic model, Gerl. Beit. Geophys., 91, 25–34.

    Google Scholar 

  • Eyring, V., et al., 2019, Taking climate model evaluation to the next level, 2019, Nature Climate Change 9, 102–110.

    Article  ADS  Google Scholar 

  • Fraedrich, K., 1979, Catastrophes and resilience of a zero‐dimensional climate system with ice‐albedo and greenhouse feedback, Q. J. Roy. Met. Soc.

  • Grieger, N., G. Schmitz, 1982, The structure of planetary waves up to the lower mesosphere based on data analyses and model calculations, J. Geophys. Res., 87, 11255.

    Article  ADS  Google Scholar 

  • Hasselmann, K., 1976, Stochastic climate models, Part I: Theory, Tellus, 28, 473–485.

    Google Scholar 

  • Kurzke, H., et al., 2012, Simulating Southern Hemisphere extra-tropical climate variability with an idealised coupled atmosphere-ocean model, Geosci. Model Dev., 5, 1161–1175.

    Article  ADS  Google Scholar 

  • Lorenz, E. N., 1963, Deterministic nonperiodic flow, J. Atmos. Sci., 20, 130-141.

    Article  ADS  MathSciNet  Google Scholar 

  • Manabe, S., and R. F. Strickler, 1964, Thermal equilibrium oft he atmosphere with a convective adjustment, J. Atmos. Sci, 21, 361–384.

    Article  ADS  Google Scholar 

  • Manabe, S., and R. T. Wetherald, 1968, On the distribution of climate change resulting from an increase in CO2-content of the atmosphere, J. Atmos. Sci., 37, 99–118.

    Article  ADS  Google Scholar 

  • Meehl, G., et al., 2011, Model-based evidence of deep-ocean heat uptake during surface-temperature hiatus periods, Nature Climate Change, 1, 360–364.

    Article  ADS  Google Scholar 

  • Pallotta, G., and B. D. Santer, 2020, Multi-Frequency Analysis of Simulated versus Observed Variability in Tropospheric Temperature, J. Climate,

  • Palmer, T., and B. Stevens, 2019, The scientific challenge of understanding and estimating climate change, PNAS, 116, 24390–24395

    Article  ADS  CAS  Google Scholar 

  • Smagorinsky, J., 1963, General Circulation Experiments with the Primitive Equations, Mon. Weather Rev.. 91, S. 99–164.

    Article  ADS  Google Scholar 

  • Stevens, B., and S. Bony, 2013, What are climate models missing?, Science, 340, S. 1053–1054.

    Article  ADS  CAS  Google Scholar 

  • Schneider, S. H., and R. E. Dickinson, 1974, Climate modeling, Rev. Geophysics,

  • Schmitz, G., and N. Grieger, 1980, Model calculations on the structure of planetary waves in the upper troposphere and lower stratosphere as a function of the wind field in the upper stratosphere, Tellus, 32, 207–214.

    Article  ADS  Google Scholar 

  • Sempf, M., et al., 2007, Toward Understanding the Dynamical Origin of Atmospheric Regime Behavior in a Baroclinic Model, J. Atmos. Sci., 64, 887–904.

    Article  ADS  Google Scholar 

  • Simpkins, G., 2017, Progress in climate modelling, Nature Clim. Change, 7, 684–685.

    Google Scholar 

  • Wunsch, C., 1999, Where do ocean heat fluxes matter? J, Geophys. Res. 104, 13235–13249

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations


Rights and permissions

Reprints and permissions

Copyright information

© 2022 Der/die Autor(en), exklusiv lizenziert durch Springer-Verlag GmbH, DE, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dethloff, K. (2022). Komplexitätsreduktion in Klimamodellen. In: Unberechenbares Klima. Springer, Berlin, Heidelberg.

Download citation

Publish with us

Policies and ethics