Skip to main content

Zeitreihenanalyse

  • Chapter
  • First Online:
MATLAB®-Rezepte für die Geowissenschaften
  • 1715 Accesses

Zusammenfassung

Die in Kap. 5 vorgestellte Zeitreihenanalyse wird zur Untersuchung des zeitlichen Verhaltens einer Variablen verwendet. In den Abschn. 5.2–5.6 werden Methoden der Fourier-basierten Spektralanalyse vorgestellt. Eine alternative Technik zur Analyse von Daten mit ungleichmäßigen Abständen wird in Abschn. 5.7 erläutert. In Abschn. 5.8 wird das sehr populäre Wavelet-Spektrum vorgestellt, das in der Lage ist, zeitliche Variationen in den Spektren auf ähnliche Weise abzubilden wie die in Abschn. 5.6 demonstrierte Methode. In Abschn. 5.9 werden dann Methoden vorgestellt, mit denen abrupte Übergänge in der zentralen Tendenz und der Streuung innerhalb von Zeitreihen erkannt und entfernt werden können. Abschn. 5.10 stellt Methoden vor, mit denen stratigraphische Sequenzen abgeglichen werden können. Dieses Kapitel schließt dann (Abschn. 5.11) mit einem Überblick über nichtlineare Techniken, mit besonderem Augenmerk auf Rekurrenzplots.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Empfohlene Lektüre

  • Ansari AR, Bradley RA (1960) Rank-Sum Tests for Dispersion. Ann Math Stat 31:1174–1189 (Open access)

    Google Scholar 

  • Blackman RB, Tukey JW (1958) The Measurement of Power Spectra. Dover, New York

    Google Scholar 

  • Brückner E (1890) Klimaschwankungen seit 1700 nebst Bemerkungen über die Klimaschwankungen der Diluvialzeit. Geographische Abhandl 4:153–484

    Google Scholar 

  • Campisano CJ et al (2017) The Hominin Sites and Paleolakes Drilling Project: High-Resolution Paleoclimate Records from the East African Rift System and Their Implications for Understanding the Environ-mental Context of Hominin Evolution. PaleoAnthropology 2017:1–43

    Google Scholar 

  • Cooley JW, Tukey JW (1965) An Algorithm for the Machine Calculation of Complex Fourier Series. Math Comput 19(90):297–301

    Article  Google Scholar 

  • Donner RV, Heitzig J, Donges JF, Zou Y, Marwan N, Kurths J (2011) The Geometry of Chaotic Dynamics – A Complex Network Perspective. Eur Phys J B 84:653–672

    Article  Google Scholar 

  • Eckmann JP, Kamphorst SO, Ruelle D (1987) Recurrence Plots of Dynamical Systems. Europhys Lett 5:973–977

    Article  Google Scholar 

  • Grenander U (1958) Bandwidth and variance in estimation of the spectrum. J Roy Stat Soc B 20:152–157

    Google Scholar 

  • Hann J (1901) Lehrbuch der Meteorologie. Tauchnitz, Leipzig

    Google Scholar 

  • Holschneider M (1995) Wavelets, an Analysis Tool. Oxford University Press, Oxford

    Google Scholar 

  • Iwanski J, Bradley E (1998) Recurrence plot analysis: To embed or not to embed? Chaos, 8:861–871

    Google Scholar 

  • Kantz H, Schreiber T (1997) Nonlinear Time Series Analysis. Cambridge University Press, Cambridge

    Google Scholar 

  • Killick R, Fearnhead P, Eckley IA (2012) Optimal detection of changepoints with a linear computational cost. J Am Stat Assoc 107:1590–1598

    Article  Google Scholar 

  • Köppen W (1931) Grundriss der Klimakunde, 2. Aufl. de Gruyter, Berlin

    Book  Google Scholar 

  • Lau KM, Weng H (1995) Climate Signal Detection Using Wavelet Transform: How to make a Time Series Sing. Bull Am Meteor Soc 76:2391–2402

    Article  Google Scholar 

  • Lavielle M (2005) Using penalized contrasts for the change-point problem. Signal Process 85:1501–1510

    Article  Google Scholar 

  • Lepage Y (1971) A combination of Wilcoxon’s and Ansari-Bradley’s statistics. Biometrika 58:213–217

    Article  Google Scholar 

  • Lomb NR (1972) Least-Squared Frequency Analysis of Unequally Spaced Data. Astro-phys Space Sci 39:447–462

    Article  Google Scholar 

  • Lorenz EN (1963) Deterministic Nonperiodic Flow. J Atmos Sci 20:130–141

    Article  Google Scholar 

  • Mackenzie D, Daubechies I, Kleppner D, Mallat S, Meyer Y, Ruskai MB, Weiss G (2001) Wavelets: Seeing the Forest and the Trees. Beyond Discovery, National Academy of Sciences, December 2001. http://www.beyonddiscovery.org

  • Mann HB, Whitney DR (1947) On a Test of Whether one of Two Random Variables is Stochastically Larger than the Other. Ann Math Stat 18:50–60

    Article  Google Scholar 

  • Marwan N, Thiel M, Nowaczyk NR (2002) Cross Recurrence Plot Based Synchronization of Time Series. Nonlinear Process Geophys 9(3/4):325–331

    Article  Google Scholar 

  • Marwan N, Trauth MH, Vuille M, Kurths J (2003) Nonlinear Time-Series Analysis on Present-Day and Pleistocene Precipitation Data from the NW Argentine Andes. Clim Dyn 21:317–332

    Article  Google Scholar 

  • Marwan N, Romano MC, Thiel M, Kurths J (2007) Recurrence Plots for the Analysis of Complex Systems. Phys Rep 438:237–329

    Article  Google Scholar 

  • Marwan N (2011) How to avoid potential pitfalls in recurrence plot based data analysis. Int J Bifurcat Chaos 21:1003–1017

    Article  Google Scholar 

  • MathWorks (2021a) Signal Processing Toolbox – User’s Guide. The MathWorks Inc., Natick

    Google Scholar 

  • MathWorks (2021b) Wavelet Toolbox – User’s Guide. The MathWorks Inc., Natick

    Google Scholar 

  • MathWorks (2021c) Bioinformatics Toolbox – User’s Guide. The MathWorks Inc., Natick

    Google Scholar 

  • Mudelsee M, Stattegger M (1997) Exploring the structure of the mid-Pleistocene revolution with advanced methods of time-series analysis. Int J Earth Sci 86:499–511

    Google Scholar 

  • Mudelsee M (2000) Ramp function regression: A tool for quantifying climate transitions. Comput Geosci 26:293–307

    Article  Google Scholar 

  • Mudelsee M (2014) Climate Time Series Analysis: Classical Statistical and Bootstrap Methods. Second Edition. Springer Verlag, Berlin Heidelberg New York

    Google Scholar 

  • Muller RA, MacDonald GJ (2000) Ice Ages and Astronomical Causes – Data, Spectral Analysis and Mechanisms. Springer, Berlin

    Google Scholar 

  • Packard NH, Crutchfield JP, Farmer JD, Shaw RS (1980) Geometry from a time series. Physical Review Letters, 45:712–716

    Google Scholar 

  • Paliwal KK, Agarwal A, Sinha SS (1982) A Modification over Sakoe and Chiba’s Dynamic Time Warping Algorithm for Isolated Word Recognition. Signal Process 4:329–333

    Article  Google Scholar 

  • Press WH, Teukolsky SA, Vetterling WT, Flannery BP (2007) Numerical Recipes: The Art of Scientific Computing, 3. Aufl. Cambridge University Press, Cambridge

    Google Scholar 

  • Romano M, Thiel M, Kurths J, von Bloh W (2004) Multivariate Recurrence Plots. Phys Lett A 330(3–4):214–223

    Article  Google Scholar 

  • Sakoe H, Chiba S (1978) Dynamic Programming Algorithm Optimization for Spoken Word Recognition. IEEE Trans Acoust Speech Signal Process ASSP 26:43–49

    Article  Google Scholar 

  • Scargle JD (1981) Studies in Astronomical Time Series Analysis. I. Modeling Random Processes in the Time Domain. Astrophys J Suppl Ser 45:1–71

    Article  Google Scholar 

  • Scargle JD (1982) Studies in Astronomical Time Series Analysis. II. Statistical Aspects of Spectral Analysis of Unevenly Spaced Data. Astrophys J 263:835–853

    Article  Google Scholar 

  • Scargle JD (1989) Studies in Astronomical Time Series Analysis. III. Fourier Transforms, Autocorrelation Functions, and Cross-Correlation Functions of Unevenly Spaced Data. Astrophys J 343:874–887

    Article  Google Scholar 

  • Scargle JD (1990) Studies in Astronomical Time Series Analysis. IV. Modeling Chaotic and Random Pro-cesses with Linear Filters. Astrophys J 359:469–482

    Article  Google Scholar 

  • Schulz M, Stattegger K (1998) SPECTRUM: Spectral Analysis of Unevenly Spaced Paleoclimatic Time Series. Comput Geosci 23:929–945

    Article  Google Scholar 

  • Schuster A (1898) On the investigation of hidden periodicities with application to a supposed 26 day period of meteorological phenomena. Terr Magmetism Atmos Electr 3:13–41

    Article  Google Scholar 

  • Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KBM. (2007) Tignor. In: Miller, H.L. (Ed.), Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge Univer- sity Press, Cambridge, United Kingdom and New York, NY, USA

    Google Scholar 

  • Takens F (1981) Detecting Strange Attractors in Turbulence. Lect Notes Math 898:366–381

    Article  Google Scholar 

  • Torrence C, Compo GP (1998) A Practical Guide to Wavelet Analysis. Bull Am Meteor Soc 79:61–78

    Article  Google Scholar 

  • Trauth MH (2015) MATLAB Recipes for Earth Sciences, 4. Aufl. Springer, Berlin

    Book  Google Scholar 

  • Trauth MH, Bookhagen B, Marwan N, Strecker MR (2003) Multiple Landslide Clusters Record Quaternary Climate Changes in the NW Argentine Andes. Palaeogeogr Palaeoclimatol Palaeoecol 194:109–121

    Article  Google Scholar 

  • Trauth MH, Larrasoaña JC, Mudelsee M (2009) Trends, rhythms and events in Plio-Pleistocene African climate. Quatern Sci Rev 28:399–411

    Article  Google Scholar 

  • Trauth MH, Foerster V, Junginger A, Asrat A, Lamb H, Schaebitz F (2018) Abrupt or Gradual? Change Point Analysis of the Late Pleistocene-Holocene Climate Record from Chew Bahir, Southern Ethiopia. Quatern Res 90:321–330

    Article  Google Scholar 

  • Trauth MH, Asrat A, Duesing W, Foerster V, Kraemer KH, Marwan N, Maslin MA, Schaebitz F (2019) Classifying past climate change in the Chew Bahir basin, southern Ethiopia, using recur-rence quantification analysis. Clim Dyn 53:2557–2572. code ClimDyn_RP_RQA.zip or https://tinyurl.com/yyqjyoq4

  • Trauth MH, Asrat A, Cohen A, Duesing W, Foerster V, Kaboth-Bahr S, Kraemer H, Lamb H, Marwan N, Maslin MA, Schaebitz F (2021) Recurring types of variability and transitions in the ~620 kyr record of climate change from the Chew Bahir basin, southern Ethiopia. Quatern Sci Rev. code QSR_RP_RQA or https://tinyurl.com/s6abkknz

  • Trulla LL, Giuliani A, Zbilut JP, Webber CL Jr (1996) Recurrence Quantification Analysis of the Logistic Equation with Transients. Phys Lett A 223(4):255–260

    Article  Google Scholar 

  • Turcotte DL (1997) Fractals and Chaos in Geology and Geophysics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Webber CL, Zbilut JP (2005) Recurrence Quantification Analysis of Nonlinear Dynamical Systems. In Riley MA, Van Orden GC, Tutorials in contemporary nonlinear methods for the behavioral sciences

    Google Scholar 

  • Weedon G (2003) Time-Series Analysis and Cyclostratigraphy – Examining Stratigraphic Records of Environmental Change. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Welch PD (1967) The Use of Fast Fourier Transform for the Estimation of Power Spectra: A Method Based on Time Averaging over Short, Modified Periodograms. IEEE Trans Audio Electroacoust AU 15:70–73

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin H. Trauth .

5.1 Elektronisches Zusatzmaterial

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Der/die Autor(en), exklusiv lizenziert durch Springer-Verlag GmbH, DE, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Trauth, M.H. (2022). Zeitreihenanalyse. In: MATLAB®-Rezepte für die Geowissenschaften. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-64357-0_5

Download citation

Publish with us

Policies and ethics