Abstract
Since the inception of Bitcoin, a plethora of distributed ledgers differing in design and purpose has been created. While by design, blockchains provide no means to securely communicate with external systems, numerous attempts towards trustless cross-chain communication have been proposed over the years. Today, cross-chain communication (CCC) plays a fundamental role in cryptocurrency exchanges, scalability efforts via sharding, extension of existing systems through sidechains, and bootstrapping of new blockchains. Unfortunately, existing proposals are designed ad-hoc for specific use-cases, making it hard to gain confidence in their correctness and composability. We provide the first systematic exposition of cross-chain communication protocols.
We formalize the underlying research problem and show that CCC is impossible without a trusted third party, contrary to common beliefs in the blockchain community. With this result in mind, we develop a framework to design new and evaluate existing CCC protocols, focusing on the inherent trust assumptions thereof, and derive a classification covering the field of cross-chain communication to date. We conclude by discussing open challenges for CCC research and the implications of interoperability on the security and privacy of blockchains.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
In off-chain protocols [85], the commitment can be done by exchanging pre-signed transactions or channel states, which will be written to the ledger at a later point.
- 3.
The full version of this paper is available at https://eprint.iacr.org/2019/1128.pdf.
References
Binance exchange. Online. https://www.binance.com/en. Accessed 19 Sep 2020
Bitcoin Wiki: Hashed Time-Lock Contracts. https://en.bitcoin.it/wiki/Hashed_Timelock_Contracts. Accessed 02 Apr 2021
Btcrelay. https://github.com/ethereum/btcrelay. Accessed 02 Apr 2021
Chainlink: A decentralized oracle network. Online. https://link.smartcontract.com/whitepaper. Accessed 19 Sep 2020
Confirmations. https://en.bitcoin.it/wiki/Confirmation. Accessed 02 Apr 2021
Ethereum contract allowing ether to be obtained with bitcoin. https://github.com/ethers/EthereumBitcoinSwap. Accessed 02 Apr 2021
Polkabtc: Trustless bitcoin on polkadot. Online. https://github.com/interlay/BTC-Parachain. Accessed 19 Sep 2020
tbtc: A decentralized redeemable btc-backed erc-20 token. http://docs.keep.network/tbtc/index.pdf. Accessed 02 Apr 2021
Top cryptocurrency decentralized exchanges. Online. https://coinmarketcap.com/rankings/exchanges/dex/. Accessed 02 Apr 2021
Why does ethereum use secp256k1?
Wrapped bitcoin. https://www.wbtc.network/assets/wrapped-tokens-whitepaper.pdf. Accessed 02 Apr 2021
Alt chains and atomic transfers. bitcointalk.org (2013). https://bitcointalk.org/index.php?topic=193281.msg2003765#msg2003765. Accessed 02 Apr 2021
Atomic swap. Bitcoin Wiki (2013). https://en.bitcoin.it/wiki/Atomic_swap. Accessed 02 Apr 2021
Wanchain whitepaper (2017). https://www.wanchain.org/files/Wanchain-Whitepaper-EN-version.pdf. Accessed 02 Apr 2021
Submarine swaps service. Online (2018). https://github.com/submarineswaps/swaps-service. Accessed 02 Apr 2021
Inter-blockchain communication protocol (ibc) specification. Online (2019). https://github.com/cosmos/ics/tree/master/ibc. Accessed 02 Apr 2021
Bitcoin on ethereum. Online (2020). https://defipulse.com/btc
Bitcoin supply on ethereum tops \$1b. Coindesk, September 2020. https://www.coindesk.com/bitcoin-supply-on-ethereum-tops-1b
Lightning loop. Online (2020). https://github.com/lightninglabs/loop. Accessed 02 Apr 2021
Ptokens: How it works. Online (2020). https://ptokens.io/how-it-works. Accessed 19 Sep 2020
Renvm. Online (2020). https://renproject.io/renvm. Accessed 19 Sep 2020
Abraham, I., Gueta, G., Malkhi, D.: Hot-stuff the linear, optimal-resilience, one-message bft devil (2018). arXiv:1803.05069
Adler, J., Berryhill, R., Veneris, A., Poulos, Z., Veira, N., Kastania, A.: Astraea: a decentralized blockchain oracle. In: 2018 IEEE International Conference on Internet Of Things (IThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), pp. 1145–1152. IEEE (2018)
Al-Bassam, M.: Lazyledger: A distributed data availability ledger with client-side smart contracts. arXiv preprint arXiv:1905.09274 (2019)
Al-Bassam, M., Sonnino, A., Bano, S., Hrycyszyn, D., Danezis, G.: Chainspace: A sharded smart contracts platform. In: 2018 Network and Distributed System Security Symposium (NDSS) (2018)
Al-Bassam, M., Sonnino, A., Buterin, V.: Fraud proofs: Maximising light client security and scaling blockchains with dishonest majorities. arXiv preprint arXiv:1809.09044, vol. 160, (2018)
Androulaki, E., Cachin, C., De Caro, A., Kokoris-Kogias, E.: Channels: horizontal scaling and confidentiality on permissioned blockchains. In: Lopez, J., Zhou, J., Soriano, M. (eds.) ESORICS 2018. LNCS, vol. 11098, pp. 111–131. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99073-6_6
Andrychowicz, M.: Multiparty computation protocols based on cryptocurrencies (2015). https://depotuw.ceon.pl/bitstream/handle/item/1327/dis.pdf. Accessed 02 Apr 2021
Asokan, N.: Fairness in electronic commerce (1998)
Asokan, N., Shoup, V., Waidner, M.: Asynchronous protocols for optimistic fair exchange. In: Proceedings 1998 IEEE Symposium on Security and Privacy (Cat. No. 98CB36186), pp. 86–99. IEEE (1998)
Asokan, N., Shoup, V., Waidner, M.: Optimistic fair exchange of digital signatures. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 591–606. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054156
Aumayr, L., et al.: Generalized bitcoin-compatible channels. IACR Cryptolology ePrint Arch. 2020, vol. 476 (2020)
Avarikioti, G., Käppeli, L., Wang, Y., Wattenhofer, R.: Bitcoin security under temporary dishonest majority. In: 23rd Financial Cryptography and Data Security (FC) (2019)
Avarikioti, G., Kogias, E.K., Wattenhofer, R.: Brick: Asynchronous state channels. arXiv preprint arXiv:1905.11360 (2019)
Avarikioti, G., Kokoris-Kogias, E., Wattenhofer, R.: Divide and scale: formalization of distributed ledger sharding protocols. arXiv preprint arXiv:1910.10434 (2019)
Avarikioti, G., Laufenberg, F., Sliwinski, J., Wang, Y., Wattenhofer, R.: Towards secure and efficient payment channels. arXiv preprint arXiv:1811.12740 (2018)
Babaoglu, O., Toueg, S.: Understanding non-blocking atomic commitment. Distributed Systems, pp. 147–168 (1993)
Back, A., et al.: Enabling blockchain innovations with pegged sidechains (2014)
Belchior, R., Vasconcelos, A., Guerreiro, S., Correia, M.: A survey on blockchain interoperability: past, present, and future trends. arXiv preprint arXiv:2005.14282 (2020)
Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable, transparent, and post-quantum secure computational integrity. IACR Cryptology ePrint Archive 2018, vol. 46 (2018)
Ben-Sasson, E., Chiesa, A., Spooner, N.: Interactive oracle proofs. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 31–60. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53644-5_2
Bennink, P., Gijtenbeek, L.V., Deventer, O.V., Everts, M.: An analysis of atomic swaps on and between ethereum blockchains using smart contracts. Technical report (2018). https://work.delaat.net/rp/2017-2018/p42/report.pdf
Bentov, I., et al.: Tesseract: Real-time cryptocurrency exchange using trusted hardware. Cryptology ePrint Archive, Report 2017/1153 (2017). Accessed 04 Dec 2017
Bentov, I., Kumaresan, R.: How to use bitcoin to design fair protocols. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8617, pp. 421–439. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44381-1_24
Bentov, I., Pass, R., Shi, E.: Snow white: Provably secure proofs of stake (2016). Accessed 08 Nov 2016
Bernstein, P.A., Hadzilacos, V., Goodman, N.: Concurrency control and recovery in database systems, vol. 370. Addison-wesley, New York (1987)
Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: From extractable collision resistance to succinct non-interactive arguments of knowledge, and back again. In: Proceedings of the 3rd Innovations in Theoretical Computer Science Conference, pp. 326–349. ACM (2012)
Boneh, D., Bonneau, J., Bünz, B., Fisch, B.: Verifiable delay functions. In: CRYPTO (2018)
Boneh, D., Bünz, B., Fisch, B.: Batching techniques for accumulators with applications to iops and stateless blockchains. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11692, pp. 561–586. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26948-7_20
Boneh, D., Naor, M.: Timed commitments. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 236–254. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44598-6_15
Bonneau, J.: Why buy when you can rent? bribery attacks on bitcoin consensus. In: BITCOIN ’16: Proceedings of the 3rd Workshop on Bitcoin and Blockchain Research, February 2016
Bonneau, J., Clark, J., Goldfeder, S.: On bitcoin as a public randomness source (2015). Accessed 25 Act 2015
Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs: Efficient range proofs for confidential transactions (2017). Accessed 10 Nov 2017
Bünz, B., Goldfeder, S., Bonneau, J.: Proofs-of-delay and randomness beacons in ethereum (2017)
Burdges, J., et al.: Overview of polkadot and its design considerations. arXiv preprint arXiv:2005.13456 (2020)
Buterin, V.: Ethereum: A next-generation smart contract and decentralized application platform (2014). Accessed 22 Aug 2016
Buterin, V.: Chain interoperability. Technical report (2016). Accessed 25 Mar 2017
Buterin, V.: Cross-shard contract yanking. https://ethresear.ch/t/cross-shard-contract-yanking/1450 (2018)
Cachin, C.: Architecture of the hyperledger blockchain fabric (2016). Accessed 10 Aug 2016
Cachin, C., Camenisch, J.: Optimistic fair secure computation. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 93–111. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44598-6_6
Castro, M., Liskov, B., et al.: Practical byzantine fault tolerance. OSDI 99, 173–186 (1999)
Chesney, T., Coyne, I., Logan, B., Madden, N.: Griefing in virtual worlds: causes, casualties and coping strategies. Inform. Syst. J. 19(6), 525–548 (2009)
Daveas, S., Karantias, K., Kiayias, A., Zindros, D.: A gas-efficient superlight bitcoin client in solidity. In: Proceedings of the 2nd ACM Conference on Advances in Financial Technologies, pp. 132–144 (2020)
David, B., Gaži, P., Kiayias, A., Russell, A.: Ouroboros praos: an adaptively-secure, semi-synchronous proof-of-stake blockchain. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 66–98. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78375-8_3
Decker, C., Wattenhofer, R.: Bitcoin transaction malleability and MtGox. In: Kutyłowski, M., Vaidya, J. (eds.) ESORICS 2014. LNCS, vol. 8713, pp. 313–326. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11212-1_18
Deshpande, A., Herlihy, M.: Privacy-preserving cross-chain atomic swaps. In: Bernhard, M., Bracciali, A., Camp, L.J., Matsuo, S., Maurushat, A., Rønne, P.B., Sala, M. (eds.) FC 2020. LNCS, vol. 12063, pp. 540–549. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-54455-3_38
Dijkstra, E.W.: Solution of a problem in concurrent programming control. In: Pioneers and Their Contributions to Software Engineering, pp. 289–294. Springer (2001). https://doi.org/10.1007/978-3-642-48354-7_10
Dilley, J., Poelstra, A., Wilkins, J., Piekarska, M., Gorlick, B., Friedenbach, M.: Strong federations: An interoperable blockchain solution to centralized third party risks. arXiv preprint arXiv:1612.05491 (2016)
Douceur, J.R.: The sybil attack. In: Druschel, P., Kaashoek, F., Rowstron, A. (eds.) IPTPS 2002. LNCS, vol. 2429, pp. 251–260. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45748-8_24
Dziembowski, S., Eckey, L., Faust, S.: Fairswap: how to fairly exchange digital goods. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, pp. 967–984. ACM (2018)
Egger, C., Moreno-Sanchez, P., Maffei, M.: Atomic multi-channel updates with constant collateral in bitcoin-compatible payment-channel networks. In: CCS (2019)
Even, S.: A protocol for signing contracts. Technical report, Computer Science Department, Technion. Presented at CRYPTO’81 (1982)
Even, S., Yacobi, Y.: Relations among public key signature systems. Technical report, Computer Science Department, Technion (1980)
Eyal, I., Sirer, E.G.: Majority is not enough: Bitcoin mining is vulnerable. In: Financial Cryptography and Data Security, pp. 436–454. Springer (2014)
Fanti, G., Kogan, L., Oh, S., Ruan, K., Viswanath, P., Wang, G.: Compounding of wealth in proof-of-stake cryptocurrencies. arXiv preprint arXiv:1809.07468 (2018)
Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus with one faulty process, vol. 32, pp. 374–382. ACM (1985)
Garay, J.A., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol with chains of variable difficulty (2016). Accessed 06 Feb 2017
Gärtner, F.C.: Specifications for fault tolerance: A comedy of failures (1998)
Gaži, P., Kiayias, A., Russell, A.: Stake-bleeding attacks on proof-of-stake blockchains. Cryptology ePrint Archive, Report 2018/248 (2018). Accessed 12 Mar 2018
Gazi, P., Kiayias, A., Zindros, D.: Proof-of-stake sidechains. IEEE Security and Privacy, IEEE (2019)
Gennaro, R., Goldfeder, S., Narayanan, A.: Threshold-optimal DSA/ECDSA signatures and an application to bitcoin wallet security. In: Manulis, M., Sadeghi, A.-R., Schneider, S. (eds.) ACNS 2016. LNCS, vol. 9696, pp. 156–174. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39555-5_9
Gervais, A., Karame, G.O., Wüst, K., Glykantzis, V., Ritzdorf, H., Capkun, S.: On the security and performance of proof of work blockchains. In: Proceedings of the 2016 ACM SIGSAC, pp. 3–16. ACM (2016)
Goldreich, O.: Secure multi-party computation. Manuscript. Preliminary version, vol. 78 (1998)
Green, M., Miers, I.: Bolt: Anonymous payment channels for decentralized currencies. Cryptology ePrint Archive, Report 2016/701 (2016). Accessed 07 Aug 2017
Gudgeon, L., Moreno-Sanchez, P., Roos, S., McCorry, P., Gervais, A.: Sok: Off the chain transactions. Cryptology ePrint Archive, Report 2019/360 (2019). https://eprint.iacr.org/2019/360
Han, R., Lin, H., Yu, J.: On the optionality and fairness of atomic swaps. Cryptology ePrint Archive, Report 2019/896 (2019). https://eprint.iacr.org/2019/896
Harz, D., Boman, M.: The scalability of trustless trust. arXiv:1801.09535 (2018). Accessed 31 Jan 2018
Heilman, E., Alshenibr, L., Baldimtsi, F., Scafuro, A., Goldberg, S.: Tumblebit: An untrusted bitcoin-compatible anonymous payment hub (2016). Accessed 29 Sep 2017
Heilman, E., Lipmann, S., Goldberg, S.: The arwen trading protocols. Whitepaper. https://www.arwen.io/whitepaper.pdf
Herlihy, M.: Atomic cross-chain swaps. arXiv:1801.09515 (2018). Accessed 31 Jan 2018
Herlihy, M., Liskov, B., Shrira, L.: Cross-chain deals and adversarial commerce. arXiv preprint arXiv:1905.09743 (2019)
Hinteregger, A., Haslhofer, B.: An empirical analysis of monero cross-chain traceability. arXiv preprint arXiv:1812.02808 (2018)
Hosp, D., Hoenisch, T., Kittiwongsunthorn, P., et al.: Comit-cryptographically-secure off-chain multi-asset instant transaction network. arXiv preprint arXiv:1810.02174 (2018)
Itakura, K., Nakamura, K.: A public-key cryptosystem suitable for digital multisignatures. NEC Res. Dev. 71, 1–8 (1983)
Johnson, D., Menezes, A., Vanstone, S.: The elliptic curve digital signature algorithm (ecdsa). Int. J. Inform. Secur. 1(1), 36–63 (2001)
Johnson, S., Robinson, P., Brainard, J.: Sidechains and interoperability. arXiv preprint arXiv:1903.04077 (2019)
Jones, J.: abitmore. Optional htlc preimage length and hash160 addition. BSIP 64, blog post. https://github.com/bitshares/bsips/issues/163
Judmayer, A., et al.: Pay-to-win: Incentive attacks on proof-of-work cryptocurrencies. Cryptology ePrint Archive, Report 2019/775 (2019). https://eprint.iacr.org/2019/775
Judmayer, A., Zamyatin, A., Stifter, N., Voyiatzis, A.G., Weippl, E.: Merged mining: Curse or cure? In: CBT’17: Proceedings of the International Workshop on Cryptocurrencies and Blockchain Technology, September 2017
Kalodner, H., Goldfeder, S., Chen, X., Weinberg, S.M., Felten, E.W.: Arbitrum: Scalable, private smart contracts. In: Proceedings of the 27th USENIX Conference on Security Symposium, pp. 1353–1370. USENIX Association (2018)
Karantias, K., Kiayias, A., Zindros, D.: Proof-of-burn. In: Bonneau, J., Heninger, N. (eds.) FC 2020. LNCS, vol. 12059, pp. 523–540. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51280-4_28
Khabbazian, M., Nadahalli, T., Wattenhofer, R.: Outpost: A responsive lightweight watchtower (2019)
Kiayias, A., Miller, A., Zindros, D.: Non-interactive proofs of proof-of-work. Cryptology ePrint Archive, Report 2017/963 (2017). Accessed 03 Act 2017
Kiayias, A., Polydouri, A., Zindros, D.: The Velvet Path to Superlight Blockchain Clients (2020)
Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: a provably secure proof-of-stake blockchain protocol. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 357–388. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7_12
Kiayias, A., Zhou, H.-S., Zikas, V.: Fair and robust multi-party computation using a global transaction ledger. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 705–734. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_25
Kiayias, A., Zindros, D.: Proof-of-work sidechains. In: International Conference on Financial Cryptography and Data Security. Springer (2018)
Kogias, E.K., Jovanovic, P., Gailly, N., Khoffi, I., Gasser, L., Ford, B.: Enhancing bitcoin security and performance with strong consistency via collective signing. In: 25th USENIX Security Symposium (USENIX Security 16), Austin, TX, Auguest 2016. USENIX Association
Kokoris-Kogias, E.: Robust and scalable consensus for sharded distributed ledgers. Technical report, Cryptology ePrint Archive, Report 2019/676 (2019)
Kokoris-Kogias, E., et al.: Calypso: Auditable sharing of private data over blockchains. Technical report, Cryptology ePrint Archive, Report 2018/209 (2018)
Kokoris-Kogias, E., Jovanovic, P., Gasser, L., Gailly, N., Syta, E., Ford, B.: Omniledger: A secure, scale-out, decentralized ledger via sharding. In: 2018 IEEE Symposium on Security and Privacy (SP), pp. 583–598. IEEE (2018)
Kumaresan, R., Bentov, I.: Amortizing secure computation with penalties. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, pp. 418–429. ACM (2016)
Küpçü, A., Lysyanskaya, A.: Usable optimistic fair exchange. Comput. Netw. 56(1), 50–63 (2012)
Kwon, J., Buchman, E.: Cosmos: A network of distributed ledgers. https://github.com/cosmos/cosmos/blob/master/WHITEPAPER.md (2015)
Kwon, Y., Kim, H., Shin, J., Kim, Y.: Bitcoin vs. bitcoin cash: Coexistence or downfall of bitcoin cash? arXiv:1902.11064 (2019)
Lamport, L.: A simple approach to specifying concurrent systems. Commun. ACM 32(1), 32–45 (1989)
Lerner, S.: Drivechains, sidechains and hybrid 2-way peg designs. Technical report, Tech. Rep. [Online] (2018)
Lerner, S.D.: Rootstock: Bitcoin powered smart contracts. https://docs.rsk.co/RSK_White_Paper-Overview.pdf (2015)
Liu, Z., et al.: Hyperservice: Interoperability and programmability across heterogeneous blockchains. arXiv preprint arXiv:1908.09343 (2019)
Luu, L., Buenz, B., Zamani, M.: Flyclient super light client for cryptocurrencies. Accessed 17 Apr 2018
Malavolta, G., Moreno-Sanchez, P., Kate, A., Maffei, M., Ravi, S.: Concurrency and privacy with payment-channel networks. In: CCS, pp. 455–471 (2017)
Malavolta, G., Moreno-Sanchez, P., Schneidewind, C., Kate, A., Maffei, M.: Anonymous multi-hop locks for blockchain scalability and interoperability. In: NDSS (2019)
McCorry, P., Bakshi, S., Bentov, I., Miller, A., Meiklejohn, S.: Pisa: Arbitration outsourcing for state channels. IACR Cryptology ePrint Archive 2018, vol. 582 (2018)
McCorry, P., Heilman, E., Miller, A.: Atomically trading with roger: Gambling on the success of a hardfork. In: CBT’17: Proceedings of the International Workshop on Cryptocurrencies and Blockchain Technology, September 2017
McCorry, P., Hicks, A., Meiklejohn, S.: Smart contracts for bribing miners. In: 5th Workshop on Bitcoin and Blockchain Research, Financial Cryptography and Data Security 18 (FC). Springer (2018)
Meckler, I., Shapiro, E.: Coda: Decentralized cryptocurrency at scale. https://cdn.codaprotocol.com/v2/static/coda-whitepaper-05-10-2018-0.pdf (2018)
Meshkov, D., Chepurnoy, A., Jansen, M.: Revisiting difficulty control for blockchain systems. Cryptology ePrint Archive, Report 2017/731 (2017). Accessed 03 Aug 2017
Micali, S.: Algorand: The efficient and democratic ledger (2016). Accessed 09 Feb 2017
Miraz, M., Donald, D.C.: Atomic cross-chain swaps: Development, trajectory and potential of non-monetary digital token swap facilities. Annals of Emerging Technologies in Computing (AETiC), vol. 3 (2019)
Moreno-Sanchez, P., Randomrun, D.V.L., Noether, S., Goodell, B., Kate, A.: Dlsag: Non-interactive refund transactions for interoperable payment channels in monero. Cryptology ePrint Archive, Report 2019/595 (2019). https://eprint.iacr.org/2019/595
Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system, December 2008. Accessed 01 Jul 2015
Noether, S.: Discrete logarithm equality across groups. Online (2020). https://www.getmonero.org/resources/research-lab/pubs/MRL-0010.pdf
Pagnia, H., Gärtner, F.C.: On the impossibility of fair exchange without a trusted third party. Technical report, Technical Report TUD-BS-1999-02, Darmstadt University of Technology (1999)
Pass, R., Shi, E.: Hybrid consensus: Scalable permissionless consensus, September 2016. Accessed 17 Act 2016
Poelstra, A.: Scriptless scripts. Presentation slides. https://download.wpsoftware.net/bitcoin/wizardry/mw-slides/2017-03-mit-bitcoin-expo/slides.pdf
Poon, J., Dryja, T.: The bitcoin lightning network (2016). Accessed 07 Jul 2016
Ritzdorf, H., Wüst, K., Gervais, A., Felley, G., et al.: Tls-n: Non-repudiation over tls enabling ubiquitous content signing. In: Network and Distributed System Security Symposium (NDSS) (2018)
Rivest, R.L., Shamir, A., Wagner, D.A.: Time-lock puzzles and timed-release crypto (1996)
Rocket, T.: Snowflake to avalanche: A novel metastable consensus protocol family for cryptocurrencies (2018). Accessed 4 Dec 2018
Rubin, J., Naik, M., Subramanian, N.: Merkelized abstract syntax trees. http://www.mit.edu/jlrubin/public/pdfs/858report.pdf (2014)
Sapirshtein, A., Sompolinsky, Y., Zohar, A.: Optimal selfish mining strategies in bitcoin (2015). Accessed 22 Aug 2016
Schnorr, C.P.: Efficient signature generation by smart cards. J. Cryptol. 4(3), 161–174 (1991). https://doi.org/10.1007/BF00196725
Siris, V.A., Dimopoulos, D., Fotiou, N., Voulgaris, S., Polyzos, G.C.: Interledger smart contracts for decentralized authorization to constrained things (2019)
Sonnino, A., Bano, S., Al-Bassam, M., Danezis, G.: Replay attacks and defenses against cross-shard consensus in sharded distributed ledgers. arXiv preprint arXiv:1901.11218 (2019)
Spoke, M., Nuco Engineering Team. Aion: The third-generation blockchain network. https://aion.network/media/2018/03/aion.network_technical-introduction_en.pdf. Accessed 17 Apr 2018
Stewart, A., Kokoris-Kogia, E.: Grandpa: a byzantine finality gadget. arXiv preprint arXiv:2007.01560 (2020)
Stewart, I.: Proof of burn (2012). Accessed 10 May 2017
Stifter, N., Schindler, P., Judmayer, A., Zamyatin, A., Kern, A., Weippl, E.: Echoes of the past: Recovering blockchain metrics from merged mining. In: Proceedings of the 23nd International Conference on Financial Cryptography and Data Security (FC). Springer (2019)
Syverson, P.: Weakly secret bit commitment: applications to lotteries and fair exchange. In: Proceedings 11th IEEE Computer Security Foundations Workshop (Cat. No. 98TB100238), pp. 2–13. IEEE (1998)
Tairi, E., Moreno-Sanchez, P., Maffei, M.: A\({^2}\)l: anonymous atomic locks for scalability and interoperability in payment channel hubs. Cryptology ePrint Archive, Report 2019/589 (2019). https://eprint.iacr.org/2019/589
Teutsch, J., Reitwießner, C.: A scalable verification solution for blockchains, March 2017. Accessed 06 Act 2017
Teutsch, J., Straka, M., Boneh, D.: Retrofitting a two-way peg between blockchains. Technical report (2018)
Teutsch, J.: TrueBit Establishment. On decentralized oracles for data availability (2017)
Thomas, S., Schwartz, E.: A protocol for interledger payments. https://interledger.org/interledger.pdf (2015)
Thyagarajan, S.A.K., Malavolta, G.: Lockable signatures for blockchains: Scriptless scripts for all signatures. Cryptology ePrint Archive, Report 2020/1613 (2020). https://eprint.iacr.org/2020/1613
Verdian, G., Tasca, P., Paterson, C., Mondelli, G.: Quant overledger whitepaper. https://www.quant.network/ (2018)
Westerkamp, M., Eberhardt, J.: zkrelay: facilitating sidechains using zksnark-based chain-relays. Contract 1(2), 3 (2020)
Wood, G.: Polkadot: Vision for a heterogeneous multi-chain framework. White Paper (2015)
Wood, G.: Ethereum: A secure decentralised generalised transaction ledger eip-150 revision (759dccd - 2017–08-07) (2017). Accessed 03 Jan 2018
Yao, A.C.-C.: How to generate and exchange secrets. In: 27th Annual Symposium on Foundations of Computer Science (sfcs 1986), pp. 162–167. IEEE (1986)
Yousaf, H., Kappos, G., Meiklejohn, S.: Tracing transactions across cryptocurrency ledgers. In: 28th \(\{\)USENIX\(\}\) Security Symposium (\(\{\)USENIX\(\}\) Security 19), pp. 837–850 (2019)
Yu, M., Sahraei, S., Li, S., Avestimehr, S., Kannan, S., Viswanath, P.: Coded merkle tree: Solving data availability attacks in blockchains. arXiv preprint arXiv:1910.01247 (2019)
Zamani, M., Movahedi, M., Raykova, M.: Rapidchain: A fast blockchain protocol via full sharding. Cryptology ePrint Archive, Report 2018/460 (2018)
Zamyatin, A., Avarikioti, Z., Perez, D., Knottenbelt, W.J.: Txchain: Efficient cryptocurrency light clients via contingent transaction aggregation, September 2020
Zamyatin, A., Harz, D., Lind, J., Panayiotou, P., Gervais, A., Knottenbelt, W.: Xclaim: Trustless, interoperable, cryptocurrency-backed assets. IEEE Security and Privacy, IEEE (2019)
Zhang, F., Maram, S.K.D., Malvai, S., Goldfeder, H., Juels, A.: Deco: Liberating web data using decentralized oracles for tls. arXiv preprint arXiv:1909.00938 (2019)
Acknowledgements
We would like express our gratitude to Georgia Avarikioti, Daniel Perez and Dominik Harz for helpful comments and feedback on earlier versions of this manuscript. We also thank Nicholas Stifter, Aljosha Judmayer, Philipp Schindler, Edgar Weippl, and Alistair Stewart for insightful discussions during the early stages of this research. We also wish to thank the anonymous reviewers for their valuable comments that helped improve the presentation of our results.
This research was funded by Bridge 1 858561 SESC; Bridge 1 864738 PR4DLT (all FFG); the Christian Doppler Laboratory for Security and Quality Improvement in the Production System Lifecycle (CDL-SQI); the competence center SBA-K1 funded by COMET; Chaincode Labs through the project SLN: Scalability for the Lightning Network; and by the Austrian Science Fund (FWF) through the Meitner program (project M-2608).
Mustafa Al-Bassam is funded by a scholarship from the Alan Turing Institute. Alexei Zamyatin conducted the early stages of this work during his time at SBA Research, and was supported by a Binance Research Fellowship.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
A Fair Exchange Using \(\mathsf {CCC}\)
A Fair Exchange Using \(\mathsf {CCC}\)
We provide the intuition of how to construct a Fair Exchange protocol using a generic \(\mathsf {CCC}\) protocol in Algorithm 1. Specifically, P and Q exchange assets \(a_P\) and \(a_Q\), if transaction \(\textsc {tx}^{}_{P}\) is written to \(\mathsf {L}_x\) and transaction \(\textsc {tx}^{}_{Q}\) is written to \(\mathsf {L}_y\) (cf. Sect. 3.2).
Rights and permissions
Copyright information
© 2021 International Financial Cryptography Association
About this paper
Cite this paper
Zamyatin, A. et al. (2021). SoK: Communication Across Distributed Ledgers. In: Borisov, N., Diaz, C. (eds) Financial Cryptography and Data Security. FC 2021. Lecture Notes in Computer Science(), vol 12675. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-64331-0_1
Download citation
DOI: https://doi.org/10.1007/978-3-662-64331-0_1
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-64330-3
Online ISBN: 978-3-662-64331-0
eBook Packages: Computer ScienceComputer Science (R0)