Skip to main content

Materialauswahl für Verbundisolatoren mit Silikongummimantel

  • Chapter
  • First Online:
Silikon-Verbundisolatoren

Zusammenfassung

Das Kap. 2 mit Beiträgen von Fr. Dr.-Ing. Christiane Bär befasst sich mit den Materialien und den Halbzeugen von Verbundstabisolatoren und Verbundhohlisolatoren. Aufgrund des umfassenden Einsatzes wird auf den Mantelwerkstoff Silikongummi fokussiert. Der Isoliermantel von Freiluftisolatoren steht in enger Wechselwirkung mit der Umwelt, d. h. die Beständigkeit gegenüber Belastungsfaktoren wie Feuchtigkeit, Fremdschichten etc. bei simultaner Spannungsbelastung ist von zentraler Bedeutung für eine lange Lebensdauer der Isolierung. Ausgewählte betriebsrelevante Eigenschaften werden vorgestellt, die Beständigkeit gegen Erosion und Kriechspurbildung sowie das vom Silikongummi bekannte dynamische Hydrophobieverhalten stehen dabei im Mittelpunkt. Gegenüber der 1. Auflage wurde das Kapitel „Material und Herstellungsverfahren“ in zwei Kapitel aufgeteilt. Neben der Aktualisierung des Wissenstandes wurden in diesem Kapitel die Themen Thermoplast-Pultrusion, biogene Fremdschichten, Beeinflussung durch Vögel (u. a. das Phänomen des Bird Streamers) und Werkstoffmechanik neu aufgenommen. Wann immer möglich, wurde auf die aktuelle Normenlage in IEC und auf Publikationen der CIGRE verwiesen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  1. S. M. Gubanski, A. Derfalk, J. Andersson and H. Hillborg: Diagnostic Methods for Outdoor Polymeric Insulators, IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 14, No. 5, October 2007

    Google Scholar 

  2. K. O. Papailiou: Grenzflächen bei Silikon-Verbundisolatoren, Bulletin SEV/VSE 21/1999

    Google Scholar 

  3. S. Ansorge, A. Camendzind, S. E. Pratsinis, M. Ammann, F. Schmuck, K. O. Papailiou: Evaluation of Silicone Rubber Housing Interfaces after Service Exposure and Performance Improvements by Nanofillers enriched Silicone Rubbers. Paper B2–208, CIGRE 2008

    Google Scholar 

  4. M. Ammann, K.O. Papailiou, S. Ansorge, F. Schmuck: Zur Bewertung von Verbundisolatoren und deren relevanten Interfacebereichen nach Freilufteinsatz. ETG Fachtagung „Grenzflächen in elektrischen Isoliersystemen“, September 2008

    Google Scholar 

  5. IEC TR 62039 Ed. 1: 2007: Selection guide for polymeric materials for outdoor use under HV stress

    Google Scholar 

  6. CIGRE Working Group D1.14: Material properties for non-ceramic out-door insulation: State of the art. Technical Brochure 255, 2004

    Google Scholar 

  7. IEC TR 62039 Ed. 2: 2021: Selection guidelines for polymeric materials for outdoor use under HV stress.

    Google Scholar 

  8. IEC IS 60587 Ed. 3: 2007: Electrical insulating materials used under severe ambient conditions – Test methods for evaluating resistance to tracking and erosion. Neue Fassung in 2022 erwartet

    Google Scholar 

  9. IEC IS 61621 Ed. 1: 1997: Dry, solid insulating materials - Resistance test to high-voltage, low-current arc discharges

    Google Scholar 

  10. IEC IS 62217 Ed. 2: 2012: Polymeric insulators for indoor and outdoor use with a nominal voltage > 1000 V – General definitions, test methods and acceptance criteria. Neue Fassung in 2023 erwartet

    Google Scholar 

  11. IEC IS 60250 Ed. 1: 1969: Recommended methods for the determination of the permittivity and dielectric dissipation factor of electrical insulating materials at power, audio and radio frequencies including metre wavelengths (replaced by IEC IS 62631–2–1: 2018)

    Google Scholar 

  12. DIN ISO 34 1:2016: Elastomere oder thermoplastische Elastomere – Bestimmung des Weiterreißwiderstandes – Teil 1: Streifen-, winkel- und bogenförmige Probekörper.

    Google Scholar 

  13. DIN 53504: 2017: Prüfung von Kautschuk und Elastomeren – Bestimmung von Reißfestigkeit, Zugfestigkeit, Reißdehnung und Spannungswerten im Zugversuch

    Google Scholar 

  14. IEC IS 60093 Ed. 2: 1980: Methods of test for volume resistivity and surface resistivity of solid electrical insulating materials (replaced by IEC IS 62631–3–2: 2015, IEC IS 62631–3–1: 2016)

    Google Scholar 

  15. IEC IS 62631–3–1: 2016: Dielectric and resistive properties of solid insulating materials – Part 3–1: Determination of resistive properties (DC methods) – Volume resistance and volume resistivity – General method

    Google Scholar 

  16. IEC IS 60455–2: 2015: Resin based reactive compounds used for electrical insulation – Part 2: Methods of test

    Google Scholar 

  17. IEC IS 60243–1 Ed. 3: 2013: Electric strength of insulating materials - Test methods – Part 1: Tests at power frequencies

    Google Scholar 

  18. IEC IS 60243–2 Ed 3: 2013: Electric strength of insulating materials - Test methods – Part 2: Additional requirements for tests using direct voltage

    Google Scholar 

  19. ISO 4892–2: 2010: Kunststoffe - Künstliches Bestrahlen oder Bewittern in Geräten – Teil 2: Xenonbogenlampen (ISO 4892–2: 2006) Amd 1: 2009); Änderung A1

    Google Scholar 

  20. ISO 4892–3: 2013: Kunststoffe - Künstliches Bestrahlen oder Bewittern in Geräten – Teil 3: UV-Leuchtstofflampen (ISO 4892–3: 2006)

    Google Scholar 

  21. DIN EN ISO 4287: 2010: Geometrische Produktspezifikation (GPS) – Oberflächenbeschaffenheit: Tastschnittverfahren - Benennungen, Definitionen und Kenngrößen der Oberflächenbeschaffenheit

    Google Scholar 

  22. ISO 3274: 1998: Geometrische Produktspezifikationen (GPS) – Oberflächenbeschaffenheit: Tastschnittverfahren – Nenneigenschaften von Tastschnittgeräten

    Google Scholar 

  23. IEC IS 60695–11–10 Ed. 1.1: 2013: Fire hazard testing – Part 11–10: Test flames – 50 W horizontal and vertical flame test methods

    Google Scholar 

  24. P-IEC IS 61006 Ed. 2: 2004: Electrical insulating materials – Methods of test for the determination of the glass transition temperature

    Google Scholar 

  25. DIN EN ISO 11357–2: 2020: Kunststoffe – Dynamische Differenzkalorimetrie (DSC) – Teil 2: Bestimmung der Glasübergangstemperatur und der Glasübergangsstufenhöhe

    Google Scholar 

  26. ISO 11359–2:1999: Kunststoffe – Thermomechanische Analyse (TMA) – Teil 2: Bestimmung des linearen thermischen Ausdehnungskoeffizienten und der Glasübergangstemperatur

    Google Scholar 

  27. ISO 6721–11:2019: Kunststoffe – Bestimmung dynamisch-mechanischer Eigenschaften – Teil 11: Glasübergangstemperatur

    Google Scholar 

  28. IEC IS 60343 Ed. 2: 1991: Recommended test methods for determining the relative resistance of insulating materials to breakdown by surface discharges

    Google Scholar 

  29. J. Kindersberger, R. Bärsch: Grenzfläche Feststoff-Gas – Beanspruchungen, Wechselwirkungen, Design, Prüfverfahren, Lebensdauer. ETG Fachtagung „Grenzflächen in elektrischen Isoliersystemen“ März 2005, Hanau, ETG-Fachbericht 99, VDE-Verlag GmbH Berlin Offenbach, S. 7–26

    Google Scholar 

  30. State of the Art Report On behalf of Study Committees 15 and 33 presented by Working Group 33/15.08: Dielectric diagnosis of electrical equipment for AC applications and its effects on insulation coordination. CIGRE Technical Brochure 059. 1990

    Google Scholar 

  31. A. Haas, J. Kindersberger: Determination of Ageing of Polymeric Insulating Materials by Thermal Analysis Methods. Proceedings of the 16th International Symposium on High Voltage Engineering, 2009 SAIEE, Innes House, Johannesburg, RSA

    Google Scholar 

  32. I. Gutman: STRI Guidelines for Diagnostics of Composite Insulators, for Visual Inspections; for Hydrophobicity; for IR Helicopter Inspections. International Conference on Suspension and Post Composite Insulators: Manufacturing, technical Requirements, Test Methods, Service Experience, Diagnostics, St. Petersburg October 2004

    Google Scholar 

  33. IEC IS 60120 Ed 4: 2020: Dimensions of ball and socket couplings of string insulator units

    Google Scholar 

  34. IEC IS 60471 Ed. 3: 2020: Clevis and tongue couplings of string insulator units – Dimensions

    Google Scholar 

  35. IEC IS 61466–1 Ed 2: 2016: Composite string insulator units for overhead lines with a nominal voltage greater than 1000 V – Part 1: Standard strength classes and end fittings

    Google Scholar 

  36. IEC IS 61466–2: Ed. 1.2: 2018+AMD1: 2002+AMD 2:2018 CSV: Composite string insulator units for overhead lines with a nominal voltage greater than 1 000 V – Part 2: Dimensional and electrical characteristics

    Google Scholar 

  37. IEC IS 60383–1 Ed 4: 1993: Insulators for overhead lines with a nominal voltage above 1000 V – Part 1: Ceramic or glass insulator units for a.c. systems – Definitions, test methods and acceptance criteria. Neue Fassung in 2022 erwartet

    Google Scholar 

  38. DIN EN ISO 2178: 2016: Nichtmagnetische Überzüge auf magnetischen Grundmetallen – Messen der Schichtdicke – Magnetverfahren

    Google Scholar 

  39. DIN EN ISO 6506–1: 2015: Metallische Werkstoffe – Härteprüfung nach Brinell – Teil 1: Prüfverfahren

    Google Scholar 

  40. ACL-Testbericht Pfisterer 20360. 2014

    Google Scholar 

  41. E. Kauczor: Metallographie in der Schadenuntersuchung – Klärung der Ursachen von Bauteilschäden, Maßnahmen zu deren Vermeidung, ISBN 978–3–540–09362–6 Springer-Verlag Berlin Heidelberg 1979

    Google Scholar 

  42. Empa Prüfbericht 454208/1: Korrosionsprüfungen – Fahrleitungstragwerke für Gotthard-Basistunnel: Verschiedene Bauteile, Baugruppen und Werkstoffe. Juli 2010

    Google Scholar 

  43. DIN EN ISO 9227: 2017: NSS: Korrosionsprüfungen in künstlichen Atmosphären – Salzsprühnebelprüfungen

    Google Scholar 

  44. EN ISO 12944–6: 2018 Beschichtungsstoffe – Korrosionsschutz von Stahlbauten durch Beschichtungssysteme – Teil 6: Laborprüfungen zur Bewertung von Beschichtungssystemen

    Google Scholar 

  45. DIN EN ISO 148–1: 2017 Metallische Werkstoffe – Kerbschlagbiegeversuch nach Charpy – Teil 1: Prüfverfahren

    Google Scholar 

  46. H. Schürmann: Konstruieren mit Faser-Kunststoff-Verbunden. Springerverlag 2007, ISBN 978–3–540–72189–5

    Google Scholar 

  47. Culimeta: Isolier- und Abschirmtechnik. Factbook, 9/2010

    Google Scholar 

  48. C. de Tourreil, F. Schmuck on behalf of CIGRE Working Group (WG) B2.03: Brittle Fractures of Composite Insulators – Field Experience, Occurrence and Risk Assessment. ELECTRA No. 214 June 2004

    Google Scholar 

  49. C. de Tourreil, F. Schmuck on behalf of CIGRE WG B2.03: Brittle Fractures of Composite Insulators – Failure Mode Chemistry, Influence of Resin Variations and Search for a Simple Insulator Core Evaluation Test Method. ELECTRA No. 215 August 2004

    Google Scholar 

  50. C. Schijver: Optimierung der elektrischen Eigenschaften glasfaserverstärkter Kunststoffe. Dissertation 1998, Shaker Verlag 1998, ISBN 3–8265–3842–0

    Google Scholar 

  51. J. Lange: Rohstoffe der Glasindustrie. Deutscher Verlag für Grundstoffindustrie, Leipzig 1993, ISBN 3-342-00663-3

    Google Scholar 

  52. Patent US 000004199364A: Glass Composition, 22. April 1980

    Google Scholar 

  53. Owens/Corning Fiberglass: ECR GLASS – Technical Status: 1991

    Google Scholar 

  54. B. C. Bunker, G. W. Arnold, D. E. Day, P. J. Bray: The effect of molecular Structure on Borosilicate Leaching. Journal of Non-Crystalline Solids 87, 1986

    Google Scholar 

  55. D. Armentrout, M. Kumosa, L. Kumosa: Water Diffusion into and Electrical Testing of Composite Insulator GRP Rods. IEEE Transactions on Dielectrics and Electrical Insulation Vol. 11, No. 3; June 2004

    Google Scholar 

  56. PPG Industries Fiber Glass: E-Glass and ECR-Glass Pultrusions Dielectric Breakdown Voltage. Firmenreport, 1995

    Google Scholar 

  57. J. Schramm: Über den Einfluss von Mikrohohlräumen auf die elektrische Festigkeit glasfaserverstärkter Epoxidharzformstoffe. Dissertation 1985

    Google Scholar 

  58. M. Kuhl: FRP Rods for Brittle Fracture Resistant Composite Insulators. IEEE Transactions on Dielectrics and Electrical Insulation Vol. 8 No. 2, April 2001

    Google Scholar 

  59. A. Schütz: The history of Rodurflex – quite a long story covering more than 3 decades. LAPP Firmenbroschüre, publiziert im Jahr 2000

    Google Scholar 

  60. Patent US 000004542106A: Glass Composition, 17. September 1985

    Google Scholar 

  61. T. S. McQuarrie: Improved dielectric and brittle Fracture resistant Core Rods for Non-ceramic Insulators. INMR Congress, Barcelona, 1999

    Google Scholar 

  62. H. Domininghaus, P, Elsner, P. Eyerer, T. Hirth: Kunststoffe, Springer Verlag, 2008, ISBN 978–3–540–72400–1

    Google Scholar 

  63. A. Phillips, F. Bologna, T. Shaw: Application of Corona Rings at 115kV and 138kV. EPRI-Document 1015917 2008, CIGRE WG B2.21 IWD 063–2009

    Google Scholar 

  64. L. S. Kumosa, M. S. Kumosa, D. L. Armentrout: Resistance to Brittle Fracture of Glass Reinforced Polymer Composites Used in Composite (Nonceramic) Insulators. IEEE Transactions on Power Delivery, Vol. 20, No. 4, October 2005

    Google Scholar 

  65. M. Kumosa, L. Kumosa, D. Armentrout: Failure Analyses of Nonceramic Insulators Part 1: Brittle Fracture Characteristics. IEEE Electrical Insulation Magazine, May/June 2005, Vol. 21, No. 3

    Google Scholar 

  66. M. Kumosa, L. Kumosa, D. Armentrout: Failure Analyses of Nonceramic Insulators: Part II—The Brittle Fracture Model and Failure Prevention. IEEE Electrical Insulation Magazine July/August 2005, Vol. 21, No. 4

    Google Scholar 

  67. A. R. Chughtai, D. M. Smith, L. S. Kumosa, M. Kumosa: FTIR Analysis of Non-ceramic Composite Insulators. IEEE Transactions on Dielectrics and Electrical Insulation Vol. 11, No. 4; August 2004

    Google Scholar 

  68. X. Liang, J. Wang, J. Dai: Surface Micro-crack Initiated Brittle Fracture in Fiber Reinforced Plastic Rod of Composite Insulator. IEEE Transactions on Dielectrics and Electrical Insulation Vol. 17, No. 2; April 2010

    Google Scholar 

  69. X. Liang, J. Fan, L. Chen: Research on the Brittle Fracture of FRP Rods and Its Acoustic Emission Detection. IEEE PES 2000WM, Paper 16–19–01, January 2000

    Google Scholar 

  70. W. Huiber, K. O. Papailiou, M. Peter, F. Schmuck: Increased Installation Performance and Application Solutions using Composite Insulators – A Manufacturerer`s Philosophy. INMR World Insulator Congress 2001 Shanghai

    Google Scholar 

  71. IEC TR 62662 Ed. 1: 2010: Guidance for production, testing and diagnostics of polymer insulators with respect to brittle fracture of core materials

    Google Scholar 

  72. https://de.wikipedia.org/wiki/Strangziehen

  73. https://exelcomposites.com/wp-content/uploads/2020/06/EN_Composite-tubes-and-hollow-profiles-2015.pdf

  74. D. Krebs: Grundlagen der Pultrusion zur Fertigung von FV-Bauteilen für die Anforderungen der automobilen Großserie. Dissertation, Fakultät für Maschinenbau Karlsruher Institut für Technologie (KIT), 2018

    Google Scholar 

  75. Shenma: SHENMA ELECTRIC POWER. Presentation 2021

    Google Scholar 

  76. IEC IS 61109 Ed. 2: 2008: Composite suspension and tension insulators for a.c. overhead lines with a nominal voltage greater than 1 000 V – Definitions, test methods and acceptance criteria. Neue Fassung in 2023 erwartet

    Google Scholar 

  77. M. Volk, A. Shelly, P. Ermanni, J. Wong, C. Bär, F. Schmuck: Pultruded Thermoplastic Composites for High Voltage Insulator Applications. IEEE Transactions on Dielectrics and Electrical Insulation (Volume 27, Issue: 4, Aug. 2020)

    Google Scholar 

  78. M. B. M. Volk: Pultrusion of thermoplastic composite cores for high voltage insulators. Doctoral thesis 27764, ETH Zurich, 2021

    Google Scholar 

  79. https://echa.europa.eu/de/home

  80. https://de.wikipedia.org/wiki/Verordnung_(EG)_Nr._1907/2006_(REACH)

  81. K. Minchenkov, A. Vedernikov, A. Safonov, I. Akhatov: Thermoplastic Pultrusion: A Review. Polymers 13, 180 (2021)

    Google Scholar 

  82. DIN EN ISO 11358–1:2020: Kunststoffe – Thermogravimetrie (Tg) von Polymeren – Teil 1: Allgemeine Grundsätze. Draft

    Google Scholar 

  83. DIN EN ISO 3219–2:2020: Allgemeine Grundlagen der Rotations- und Oszillationsrheometrie. Draft

    Google Scholar 

  84. ASTM D3914–2: 2016: Standard Test Method for In-Plane Shear Strength of Pultruded Glass-Reinforced Plastic Rod

    Google Scholar 

  85. DIN EN ISO 2409: 2020: Beschichtungsstoffe – Gitterschnittprüfung

    Google Scholar 

  86. R. Gorthala, D. R. Flynn: Apparatus for and method of producing thick polymeric composites US Patent 6,007,655. 1999

    Google Scholar 

  87. S. M. Rowland, I. Cotton, C. Zachariades, F Allison, V Peesapatti, D Chambers: Developing Composite Insulating Cross-Arms for 400 kV Lattice Towers, INMR, July 2, pp 86–90, (2014)

    Google Scholar 

  88. EP2467915B1: Support towers, insulating cross-arms and insulating members for high voltage power networks. 2016

    Google Scholar 

  89. K. O. Papailiou, S. Thaddey, F. Schmuck, C. Armschat, J. C. Stankewitz: Development of an 800kV HVDC station post design based on the long-term experience with composite line post insulators. CIGRE Session 2010, Paper B3_101_2010

    Google Scholar 

  90. D. Lakhapati, A. Furrer, HR. Gassmann, F. Schmuck: Examples of Transmission Line Tower Configurations and Solutions such as 765 kV insulated Cross Arms to minimize the Impact of new EHV Lines. CIGRE Session 2014, Paper B2–106

    Google Scholar 

  91. B. Hill, V. Sklenicka, F. Schmuck on behalf of CIGRE WG B2.21: Investigation of different liquid Solutions for Dye Penetration Tests used in Standard IEC 62217 for Design and Routine Testing. ELEKTRA 251_1. 2010

    Google Scholar 

  92. M. Neitzel, U. Breuer: Die Verarbeitungstechnik der Faser-Kunststoff-Verbunde. Hanser Verlag 1997, ISBN 3–446–19012–0

    Google Scholar 

  93. Y. Kieffel, A. Girodet, F. Biquez, Ph. Ponchon, Owens, M. Costello, M. Bulinski, R. Van San, K. Werner: SF6 Alternative Development for High Voltage Switchgears. CIGRE Session 2014 Paris, Paper D1–305

    Google Scholar 

  94. M. Seeger, R. Smeets, J. Yan, H. Ito, M. Claessens, E. Dullni, C. M. Franck, F. Gentils, W. Hartmann, Y. Kieffel, S. Jia, G. Jones, J. Mantilla, S. Pawar, M. Rabie, P. Robin-Jouan, H. Schellekens, J. Spencer, T. Uchii, X. Lia, S. Yanabu: Recent development of alternative gases to SF6 for switching applications. CIGRE ELECTRA 291, April 2017

    Google Scholar 

  95. S. Brynda, Y. Park, H. Sohn, T. H. Song, X. Ye, J. D. Mantilla: Theoretical and Practical Behaviour of Eco-friendly SF6 Alternatives in High Voltage Switchgear. CIGRE Session 2020, Paper A3–119

    Google Scholar 

  96. H. Büchner, F. Schmuck, A. Zanetti: Cellpack' s Cevosil – 10 Years of technical and marketing Experience. 3. Symposium on Non-Ceramic Insulators in Miami 1997

    Google Scholar 

  97. F. Schmuck: Cevosil Composite Hollow Insulator – Facts, History, State of the Art and Design Basics. Factbook 1998, Cellpack AG

    Google Scholar 

  98. G. Rocchetti, E. Moal: Computer-simulated Design of high Performance Hollow Core Insulators for specialized Applications. INMR Congress 2005, Hong-Kong

    Google Scholar 

  99. F. Y. Chu: SF6 Decomposition in Gas-Insulated Equipment. IEEE Transactions on Electrical Insulation 1986

    Google Scholar 

  100. M. Piemontesi, L. Niemeyer: Surface reactions of SF6 decomposition products. CEIDP S. Francisco 1996

    Google Scholar 

  101. A. Eidinger, R. Schaumann: Schwefelhexaflourid. Brown Boveri Mitteilungen 4–79, 1979

    Google Scholar 

  102. V. Hinrichsen, N. Möhring, T. Wietoska, H. Haupt, A. Bockenheimer, C. Heinemann, C. Berger, I. Gottschalk, N. Kurda, N. Mikli, F. Schmuck, J. Seifert: Resistance to vapour permeation of factory new and of mechanically stressed composite hollow insulators. CIGRE Session Paris 2010, A3–304_2010

    Google Scholar 

  103. N. Möhring: Wasserdampfdurchlässigkeit von Komposit-Hohlisolatoren. Dissertation TU Darmstadt, 2010

    Google Scholar 

  104. J.-P. Habas, J.-M. Arrouy, F. Perrot: Effects of Electric Partial Discharges on the Rheological and Chemical Properties of Polymers Used in HV Composite Insulators after Railway Service. IEEE Transactions on Dielectrics and Electrical Insulation Vol. 16, No. 5; October 2009

    Google Scholar 

  105. Einführung in die Hochspannungstechnik, 4. Lehrbrief: Luftisolierung

    Google Scholar 

  106. CIGRE WG A3.21: Aspects for the application of composite insulators to high voltage (≥ 72 kV) apparatus. Technical Brochure 455 April 2011

    Google Scholar 

  107. A. Tomanek: Silicones & Industry. Hanser Verlag, 1991, ISBN 3–446–17264–5

    Google Scholar 

  108. Patent DE 2650363 C2: Verbundisolator für Hochspannungsfreiluft-Anwendungen. 3. 11. 1976

    Google Scholar 

  109. E. A. Cherney, J. T. Burnham, R. S. Gorur: Outdoor Insulators. 1999, ISBN 0967761107

    Google Scholar 

  110. F. Schmuck: Zur zeitraffenden Alterungsprüfung von Silikongummi-Oberflächen unter Fremdschichtbelastung und simultaner 50-Hz-Spannungsbeanspruchung. Dissertation 1992, HTWS Zittau, Germany

    Google Scholar 

  111. F. Schmuck, R. Bärsch: Electrochemical and Microbiological Phenomena during Accelerating Ageing Tests of Polymeric Insulators. 8. ISH Yokohama, 1993

    Google Scholar 

  112. F. Schmuck, W. Ramm: Zum Einfluss einer biologischen Wechselwirkung zwischen polymerem Isolierstoff und Prüfmilieu während zeitraffender Alterungsprüfungen mit fließenden Fremdschichten. Elektrie 11/1991

    Google Scholar 

  113. H-J. Winter, R. Bärsch: Oberflächenverhalten von Siliconelastomeren unter Feuchte- und biogenen Belastungen. RCC Konferenz, Berlin 2006

    Google Scholar 

  114. C. Neumann: Betriebsverhalten von Verbundisolatoren, ETG-Fachbericht 93, VDE-Verlag 2003

    Google Scholar 

  115. S. Gubanski, A. Derfalk, S. Wallström, S. Karlsson: Biological Contamination of Insulators: Influence on Performance and Diagnostic Techniques to Assess the Problem. INMR World Insulator Congress 2005 Hongkong

    Google Scholar 

  116. M. A. R. M. Fernando, S. M. Gubanski: Ageing of Silicone Rubber Insulators in Coastal and Inland Tropical Environment. IEEE Transactions on Dielectrics and Electrical Insulation Vol. 17, No. 2; April 2010

    Google Scholar 

  117. M. A. R. M. Fernando, H. Rajamantri, S. M. Gubanski: Performance of Silicone Rubber Composite Insulators in Sri Lanka. First International Conference on Industrial and Information Systems, ICIIS 2006, 8 - 11 August 2006, Sri Lanka

    Google Scholar 

  118. S. M. Gubanski, S. Karlsson and M. A. R. M. Fernando: Performance of Biologically Contaminated High Voltage Insulators. ICIIS 2006, 8 - 11 August 2006, Sri Lanka

    Google Scholar 

  119. R. Bärsch, M. Kuhl: Betriebserfahrungen und Untersuchungen an Kunststoffisolatoren in einer 20 kV-Leitung auf der Insel Nordstrand. ETG-Fachbericht 76, 1999

    Google Scholar 

  120. K. O. Papailiou, M. Peter, W. Fluri, F. Schmuck: A Review of Material Development, recent 420 kV Braced Line Post Designs and Long-term Evaluation of Composite Insulators in Silicone Rubber Technology. INMR Insulator Symposium 2003 Marbella

    Google Scholar 

  121. J.-M. George: Review of Polymer Materials and Design Considerations Based on Field Experience and Laboratory Testing. INMR Congress 2009, Kreta

    Google Scholar 

  122. Korrespondenz mit HJ. Winter, Wacker Chemie AG, Burghausen, Germany: Thermisches Verhalten von ATH

    Google Scholar 

  123. S. Kumagai, N. Yoshimura: Tracking and Erosion of HTV Silicone Rubber and Suppression Mechanism of ATH. IEEE Transactions on Dielectrics and Electrical Insulation Vol. 8 No. 2, April 2001

    Google Scholar 

  124. L. E. Schmidt, X. Kornmann, A. Krivda, H. Hillborg: Tracking and Erosion Resistance of High Temperature Vulcanizing ATH-free Silicone Rubber. IEEE Transactions on Dielectrics and Electrical Insulation Vol. 17, No. 2; April 2010

    Google Scholar 

  125. Kautschuk Gummi Kunststoffe 10/2006

    Google Scholar 

  126. L. H. Meyer, S. H. Jayaram, E. A. Cherney: A novel technique to evaluate the erosion resistance of silicone rubber composites for high voltage outdoor insulation using infrared laser erosion. IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 12, 2005

    Google Scholar 

  127. S. Ansorge, F. Schmuck, K. O. Papailiou: Improved Silicone Rubbers for the Use as Housing Material in Composite Insulators. IEEE Transactions on Dielectrics and Electrical Insulation, Volume 19, No. 1, February 2012

    Google Scholar 

  128. L. Meyer, S. Jayaram, E. A. Cherney: Thermal Conductivity of Filled Silicone Rubber and its Relationship to Erosion Resistance in the Inclined Plane Test. IEEE Transactions on Dielectrics and Electrical Insulation Vol. 11, No. 4; August 2004

    Google Scholar 

  129. L. H. Meyer, E.A. Cherney, S.H. Jayaram: The Role of Inorganic Fillers in Silicone Rubber for Outdoor Insulation – Alumina Tri-Hydrate or Silica. IEEE Electrical Insulation Magazine July/August 2004 – Vol. 20, No. 4

    Google Scholar 

  130. R. J. Chang, L. Mazeika: Electrical Activities associated with Inclined-Plane Tracking and Erosion Test. CEIDP San Francisco 1996

    Google Scholar 

  131. H. Kärner: Research at Braunschweig – Studies of interfacial Phenomena in Composite Insulators. Insulator News & Market Report, Vol.3, No.3, May/June 1995, S. 9–11

    Google Scholar 

  132. J. Kindersberger: Stand und Tendenzen der Prüfung von Kunststoffen für Freiluftisolierungen HIGHVOLT Kolloquium, Mai 2003, Dresden, Beitrag 4.2, S. 121-131

    Google Scholar 

  133. R. S. Gorur, E. A. Cherney, R. Hackam: Polymer Insulator Profiles Evaluated In A Fog Chamber. IEEE Transactions on Power Delivery, Vol. 5, No. 2, April 1990

    Google Scholar 

  134. R. S. Gorur, B. S. Bernstein: Field and Laboratory Aging of polymeric. Distribution Cable Terminations: Part 1 – Field Aging. IEEE Transactions on Power Delivery, Vol. 13, No. 2, April 1998

    Google Scholar 

  135. R. S. Gorur, B. S. Bernstein: Field and Laboratory Aging of polymeric Cable Terminations: Part 2 – Laboratory Aging. IEEE Transactions on Power Delivery, Vol. 13, No. 2, April 1998

    Google Scholar 

  136. J. Seifert, R. Bärsch: Design Evaluation of Silicone Rubber Composite lnsulators under the Aspect of Surface Pollution Stress, 15. International Symposium on High Voltage Engineering, Ljubljana, Slovenia, August 2007

    Google Scholar 

  137. J. M. Seifert, R, Bärsch, W. L. Vosloo: Dimensioning of the Housing Profile of Silicone Rubber Composite lnsulators for Harsh Marine Pollution Conditions, CIGRE Session 2008, Paris, Paper D1–303

    Google Scholar 

  138. R. Bärsch: Polymere lsolier- und Funktionswerkstoffe für Hochspannungsisolatoren und Kabelgarnituren – Beanspruchungen, anwendungsspezifische Eigenschaften und Prüfverfahren, RCC-Fachtagung "Werkstoffe – Forschung und Entwicklung neuer Technologien zur Anwendung in der elektrischen Energietechnik“, Berlin Mai 2009

    Google Scholar 

  139. C. Baer, F. Schmuck, J Strumbelj, E. Tinner, J. Lachman, S. Kornhuber, J. T. Loh: Technical Demands to Improve Today`s Composite Insulator Reliability, CIGRE Session Paris 2020, Paper B2–221, August 2020

    Google Scholar 

  140. J-M. George, C. Pons, W. L. Vosloo: Assessment of performance of insulators through leakage current monitoring under contaminated conditions. CIGRE Session Paris 2020, Paper B2–218

    Google Scholar 

  141. C. Baer, F. Schmuck, J. Strumbelj, E. Tinner, J. Lachman, S. Kornhuber, J. T. Loh: Technical Demands to Improve Today`s Composite Insulator Reliability, submitted to CIGRE Centennial 2021, Paper B2–221

    Google Scholar 

  142. IEC IS 61302 Ed. 1: 1995: Electrical insulating materials – Method to evaluate the resistance to tracking and erosion – Rotating wheel dip test

    Google Scholar 

  143. H. Jahn: Zur Bewertung stofflicher und herstellungsbedingter Einflussgrößen auf das Hydrophobie- und Erosionsverhalten von Silikonelastomeroberflächen. Dissertation, TU Dresden 2003, Shaker Verlag ISBN 3–8322–1963–3

    Google Scholar 

  144. H. Büchner, F. Schmuck, A. Zanetti, A. Zingg, R. Bärsch, H. Jahn: Description of a complex Test Programme for the Evaluation of Outdoor Aging Relevant Properties of Silicone Rubber. 7. IEE Conference in Bath, 1996

    Google Scholar 

  145. H. Büchner, F. Schmuck, A. Zanetti, R. Bärsch, H. Jahn, J. Lambrecht: A comprehensive Programme for the Evaluation of essential Material Properties of Silicone Rubber for Outdoor High Voltage Applications. Lokale CIGRE in Cairo 1997

    Google Scholar 

  146. D. H. Han, H. G. Cho, S. W. Han: Effects of Alumina Trihydrate on the Electrical Insulation Properties of HTV Silicone Rubber. Proceedings of the 7th lnternational Conference on Properties and Applications of Dielectric Materials June 1–5 2003 Nagoya

    Google Scholar 

  147. S. Kumagai, N. Yoshimura: Influences Single and Multiple Environmental Stresses on Tracking and Erosion of RTV Silicone Rubber. IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 6, No. 2, pp. 211-225, 1999

    Article  Google Scholar 

  148. F. Schmuck, R. Baersch, J. Pilling: About an improved evaluation of results by the standardized salt-fog procedure for composite insulators. European Transaction Electrical Power, Vol. 6, pp. 237-243, 1996

    Article  Google Scholar 

  149. S. Ansorge, F. Schmuck, S. Aitken, K. O. Papailiou: Improved Performance of Silicone Rubbers for the Use in Composite Insulators. CIGRE Session 2010

    Google Scholar 

  150. A. Krivda, L. E. Schmidt, X. Kornmann, H. Ghorbani, A. Ghorbandaeipour, M. Eriksson, H. Hillborg: Inclined-Plane Tracking and Erosion Test according to the IEC 60587 Standard. IEEE Electrical Insulation Magazine November/December 2009 – Vol. 25, No. 6

    Google Scholar 

  151. J. M. Seifert, R. Bärsch, W. L. Vosloo: Dimensioning of the Housing Profile of Silicone Rubber Composite Insulators for Harsh Marine Pollution Conditions. CIGRE Session 2008, Paper D1 – 303

    Google Scholar 

  152. CIGRE WG D1.14: Evaluation of Dynamic Hydrophobicity Properties of Polymeric Materials for Non-Ceramic Outdoor Insulation – Retention and Transfer of Hydrophobicity. Technical Brochure 442, December 2010

    Google Scholar 

  153. IEC TS 62073 Ed. 2: 2016: Guidance on the measurement of wettability of insulator surfaces.

    Google Scholar 

  154. KRUESS: Messung des Kontaktwinkels. Online-Dokumentation http://www.kruss.de/de/theorie/messungen/kontaktwinkel/messung-des-kontaktwinkels.html

  155. A. Kopczynska: Oberflächenspannungsphänomene bei Kunststoffen – Bestimmung und Anwendung. Diss. Technische Fakultät der Universität Erlangen-Nürnberg, 2008

    Google Scholar 

  156. J. Lambrecht: Über Verfahren zur Bewertung der Hydrophobieeigenschaften von Silikonelastomer-Formstoffen. Dissertation, TU Dresden 2001, Shaker Verlag ISBN 3–8265–9129–1

    Google Scholar 

  157. C. C. Kokalis, T. Tasakos, V. T. Kontargyri, G. Siolas, I. F. Gonos, C. A. Christodoulou, K. O. Papailiou: Hydrophobicity Classification of Composite Insulators Using Convolutional Neural Networks. CIGRE Science and Engineering, No. 23, December 2021

    Google Scholar 

  158. R. Baersch, H. Jahn, J. Lambrecht, F. Schmuck: Test methods for polymeric insulating materials for outdoor HV insulation. IEEE Transactions on Dielectrics and Electrical Insulation Volume: 6, Issue: 5. 1999

    Google Scholar 

  159. R. Bärsch, J. Lambrecht, H.-J. Winter: On the Valuation of the Early Aging Period of Polymer Insulator Surfaces During Accelerated Aging Tests, 9th ISH, Proceedings, Volume 3, Pollution Phenomena, Paper 3023, Graz, 1995

    Google Scholar 

  160. R. Bärsch, J. Lambrecht, H. Jahn: On the Evaluation of the Hydrophobicity of Composite Insulator Surfaces. IEEE Conference on Electrical Insulation and Dielectric Phenomena IEEE CEIDP 1996, San Francisco, pp. No. 5A-19

    Google Scholar 

  161. R. Bärsch, J. Lambrecht, HJ. Winter: On the Evaluation of Influences on the Hydrophobicity of Silicon-Rubber-Surfaces. 10th ISH Montreal (1997), Proceedings Vol. 3, pp. 13–16

    Google Scholar 

  162. U. Kaltenborn, J. Kindersberger, R. Bärsch, H. Jahn: On the Electrical Performance of Different Insulating Materials in a Rotating-Wheel-Dip-Test. IEEE CEIDP Minneapolis Oktober1997, Paper 5A-1 0

    Google Scholar 

  163. H. Jahn, R. Bärsch, U. Kaltenborn, J. Kindersberger: The Evaluation of the Early Aging Period of Castings Made of Epoxy and PUR resins. IEEE CEIDP Atlanta, October 1998, Paper 6B-7

    Google Scholar 

  164. IEC TR 62730 Ed. 1: 2012: HV polymeric insulators for indoor and outdoor use – Tracking and erosion testing by wheel test and 5000h test

    Google Scholar 

  165. ANSI C29.18: 2013: Insulators composite - distribution line post type

    Google Scholar 

  166. R. Bärsch: Bewertung der Hydrophobie sowie des Kriechstromverhaltens von Silikonelastomeren für Hochspannungs-Freiluftisolatoren. ETG-Fachbericht 93 (2003), S. 97-108

    Google Scholar 

  167. R. Cervinka, R. Bärsch, F. Exl, J. Kindersberger, H.-J. Winter: Untersuchungen zur Beständigkeit der Hydrophobie von polymeren Isolierstoffoberflächen und ihrer Wiederkehr mit dem Dynamischen Tropfen-Prüfverfahren, ETG-Fachtagung „Grenzflächen in elektrischen Isoliersystemen“ Würzburg 2008

    Google Scholar 

  168. A. Hergert, J. Kindersberger, C. Bär, R. Cervinka, R. Bärsch: Hydrophobiebeständigkeit polymerer Isolierwerkstoffe mit dem Dynamischen Tropfen-Prüfverfahren – Vergleich zwischen AC- und DC-Beanspruchungen. RCC Polymertechnik GmbH Fachtagung: 3.- 4. Mai 2012 Berlin

    Google Scholar 

  169. J. Kindersberger, R. Bärsch, A. Hergert, C. Bär: Prüfverfahren für die Bewertung wasserabweisender Eigenschaften polymerer Isolierwerkstoffe für Hochspannungsanwendungen; Abschlussbericht zum IGF-Vorhaben Nr. 17001 BG der Forschungsvereinigung Elektrotechnik beim ZVEI e. V. im VDE e. V., Frankfurt/Main, 2015

    Google Scholar 

  170. C. Baer, F. Schmuck, S, Kornhuber, R. Baersch, V. Brade: Influence of the Material Composition on the Dynamic Hydrophobicity of Silicone Elastomers for high-voltage Outdoor Application, CIGRE Session Paris 2018, paper D1–310, August 2018

    Google Scholar 

  171. J. Kindersberger, R. Bärsch: Grenzfläche Feststoff-Gas – Beanspruchungen, Wechselwirkungen, Design, Prüfverfahren, Lebensdauer. Übersichtsvortrag der ETG-Fachtagung „Grenzflächen in elektrischen Isoliersystemen“ 2005 in Hanau, Deutschland

    Google Scholar 

  172. X. Liang, C. R.Li, L. Ding: Study on the Hydrophobicity of HTV SIR Treated by Different Corona Intensity. Power and Energy Engineering Conference, APPEEC 2009. Asia-Pacific

    Google Scholar 

  173. S. H. Kim, E. A. Cherney, R. Hackam: The Loss and Recovery of Hydrophobicity of RTV Silicone Rubber Insulator Coating. Transactions on Power Delivery, Vol. 5, No. 3, July 1990

    Google Scholar 

  174. K. Siderakis, D. Agoris, S. M. Gubanski: Salt Fog Evaluation of RTV SIR Coatings with Different Fillers. Transactions on Power Delivery, Vol. 23, No. 4, October 2008

    Google Scholar 

  175. R. Hackam: Outdoor HV Composite Polymeric Insulators. IEEE Transactions on Dielectrics and Electrical Insulation Vol. 6 No. 5, October 1999

    Google Scholar 

  176. C. L. Lee, G. R. Homan: Silicone Elastomer Protective Coatings for HV Insulators. IEEE-CEIDP, 1981

    Google Scholar 

  177. R. S. Gorur, E. A. Cherney, R. Hackam: Factors Influencing the Performance of Polymeric lnsulating Materials in Contaminated Environments. IEEE-CEIDP, 1986

    Google Scholar 

  178. R. S. Gorur, E. A. Cherney, R. Hackam, T. Orbeck: The Electrical Performance of Polymeric Insulating Materials Under Accelerated Aging in Fog Chamber. IEEE Transaction on Power Delivery, Vol. 3, 1988

    Google Scholar 

  179. S. H. Kim, E. A. Cherney, R. Hackam. Effects of Filler Level in RTV Silicone Rubber Coatings Used in HV Insulators IEEE Transactions on Electrical Insulation Vol. 27 No. 6, December 1982

    Google Scholar 

  180. M. Kocher: Experience with Silicone Composite Insulators in the Tunnels of BLS Lötschberg. Railway Technology 1993

    Google Scholar 

  181. I. Y. AI-Hamoudi: Field Test Results of Composite Silicone Rubber Insulators at Shoaiba of Saudi Arabia. GCC Power 4th CIGRE Conference 2008, Bahrain

    Google Scholar 

  182. R. Munteanu: Silicone rubber insulators life cycle costs. Transmission and Distribution, International 1994

    Google Scholar 

  183. J. Kindersberger, M. Kuhl: Effect of Hydrophobicity on Insulator Performance. 6. ISH New Orleans 1989

    Google Scholar 

  184. H. Janssen, H. Herden, H. C. Kärner: LMW Components in Silicone Rubbers and Epoxy Resins. 11. ISH London 1999

    Google Scholar 

  185. H. Janssen, H. Herden, H. C. Kärner: The loss and recovery of hydrophobicity on silicone rubber surfaces. 10. ISH Montreal 1997

    Google Scholar 

  186. H.-J. Winter, R. Bärsch: Oberflächenverhalten von Siliconelastomeren unter feuchten und biogenen Belastungen. RCC-Fachtagung "Werkstoffe für Isolatoren, Überspannungsableiter, Kabelgarnituren, Schaltgeräte, Berlin 06.-07. April 2006, Tagungsband S. 49–58

    Google Scholar 

  187. S. Gubanski: Biological growth on non-ceramic insulators. CIGRE 2008 Paris, SC D1 Pref. Subject: 3, Question N°: 3.6

    Google Scholar 

  188. M. N. Dinesh, N. Vasudev, P. V. Vasudevan Nambudri, K. Suryanarayana, K. N. Ravi, V. Krishnan: Performance of composite insulators with and without bio contamination. 2008 International Conference on High Voltage Engineering and Application, Chongqing, China, November 9–13, 2008

    Google Scholar 

  189. K. O. Papailiou, M. Peter, F. Schmuck: SEFAG`s Silcosil – 20 Years of innovative Solutions using Silicone Composite Insulators for high Voltage electrical Systems. INMR World Insulator Congress 1999 Barcelona

    Google Scholar 

  190. A. Hergert: Test methods for evaluating dynamic properties of hydrophobicity of polymeric insulating materials, Dissertation, Technische Universität München, 2016

    Google Scholar 

  191. A. Hergert, J. Kindersberger, R. Bärsch, C. Bär: Transfer of hydrophobicity of polymeric insulating materials for high voltage outdoor application, IEEE Transactions on Dielectrics and Electrical Insulation, Volume 24, Issue 2, April 2017

    Google Scholar 

  192. Y. Koshino, I. Umeda, M. Ishiwari: Deterioration of silicone rubber for polymer insulators by corona discharge and effects of fillers. Annual Report Conference on Electrical Insulation and Dielectric Phenomena, Vols 1 and 2, 1998

    Google Scholar 

  193. F. Schmuck: Status of Test Procedures for FRP Cores of Composite Insulators. INMR Magazine Volume 1, 2009

    Google Scholar 

  194. G. Jander, K. F. Jahr, G. Schulze, J. Simon: Maßanalyse. Theorie und Praxis der Titrationen mit chemischen und physikalischen Indikationen. p. 81, 16th Edition. Walter de Gruyter, Berlin 2003, ISBN 3–11–017098–1

    Google Scholar 

  195. K. Naito, R. Matsuoka, K. Sakanishi: Investigation of the insulation performance of the insulator covered with Lichen. IEEE Transactions on Power Delivery, vol. 5, no. 3, pp. 1634-1640, July 1990

    Google Scholar 

  196. R. P. Tshubwana, C. Gomes, A. F. Nnachi, M.M. Katun: Microbial growth on insulator material surfaces under different climate conditions – Review paper, 6th IEEE International Energy Conference (ENERGYCON), 2020

    Google Scholar 

  197. R. D. McAfee, R. D Heaton, J. M. King and A. U. Falster: A study of biological contaminants on HV porcelain insulators, Electric Power System Research, vol.42, pp. 35-39, 1997

    Article  Google Scholar 

  198. S. M. Gubanski, M. A. R. M. Fernando, S. J. Pietr, J. Matula and A. Kyaruzi: Effects of biological contamination on insulator performance, presented at the 6th International Conference on Properties and Applications of Dielectric Materials, Xi’an, China, 2000

    Google Scholar 

  199. H. C. Flemming: Relevance of biofilms for the biodeterioration of surfaces of polymeric materials, Polymer Degradation and Stability, vol. 59, pp. 309-315, 1998

    Article  Google Scholar 

  200. S. Wallstrom: Biofilms on silicone rubber materials for outdoor high voltage insulation, PhD, Royal Instate of Technology, Stockholm, Sweden, 2005

    Google Scholar 

  201. ISPM 15: Regulation of wood packaging material in international trade, Secretariat of the International Plant Protection Convention, adopted 2018; published 2019

    Google Scholar 

  202. DIN EN ISO 846: Kunststoffe – Bestimmung der Einwirkung von Mikroorganismen auf Kunststoffe, Oktober 1997

    Google Scholar 

  203. F. Schmuck: Upgrade of the Composite Insulator Handling Guide. INMR Juli 2012

    Google Scholar 

  204. G. Xia, S. Yang, X. Wei, J. Zhang and J. Chu: Hydrophobicity and insulated resistance of composite insulators with biological contamination, 2016 IEEE International Conference on High Voltage Engineering and Application (ICHVE), 2016

    Google Scholar 

  205. S. Yang, Z. Jia, X. Ouyang, H. Bai, X. Zhang: Influence of algae growth on the electrical performance of RTV coating, 2017 IEEE Electrical Insulation Conference (EIC), 2017, pp. 321-324

    Google Scholar 

  206. C. Xie, C. Li, W. Zhu and Y. Gan: Analysis of green algae contamination on 500kV silicone rubber composite insulators. 1st International Conference on Electrical Materials and Power Equipment (ICEMPE), 2017, pp. 664–666

    Google Scholar 

  207. I. Gutman, A. Dernfalk, V. Malinen, M. Radosavljevic, K. Varli: Critical Review on Biological Growth on Composite Insulators in Northern and Central European Environments: Evaluation of Risk for Pollution Flashover and Ageing. CIGRE Science and Engineering No. 22, October 2021

    Google Scholar 

  208. I. Chopra: The increasing use of silver-based products as antimicrobial agents: a useful development or a cause for concern?. Journal of Antimicrobial Chemotherapy (2007) 59, 587–590, 2007

    Google Scholar 

  209. DIN EN 60068–2–10: Umgebungseinflüsse – Teil 2–10: Prüfverfahren – Prüfung J und Leitfaden: Schimmelwachstum (IEC 60068–2–10:2005), März 2006

    Google Scholar 

  210. H.-P. Kleber, D. Schlee, W. Schöpp: Biochemisches Praktikum. Gustav Fischer Verlag Jena 1987

    Google Scholar 

  211. B. Dolezel: Die Beständigkeit von Kunststoffen und Gummi. Carl Hauser Verlag München Wien 1978

    Google Scholar 

  212. H. H. Frank: Besiedlung und Schädigung von Kunststoffen durch Mikroorganismen. Forum Mikrobiologie 6/1984

    Google Scholar 

  213. B. A. Dias, E. G. Costa, A. D. Germano, T. V. Ferreira, K. B. Brito, L. A. Barbosa1, A. I. Silva Neto, J. K. P. Silva, R. C. Bezerra, S. Silveira, R. S. Paiva, D. R. Mello: Impact Analysis of biological Pollution on Glass Insulators. 20th International Symposium on High Voltage Engineering, Argentina, 2017

    Google Scholar 

  214. J. Starka: Physiologie und Biochemie der Mikroorganismen. Gustav Fischer Verlag Jena 1968

    Google Scholar 

  215. U. Hänel: Biologische Abwasserreinigung mit Belebtschlamm. Gustav Fischer Verlag Jena 1986

    Google Scholar 

  216. G. Theden, G. Becker: Prüfung auf Verhalten gegen Organismen. Nitsche/Wolf «Kunststoffe II» Springer Verlag 1961

    Google Scholar 

  217. N. Pearce, J. Thornton: Transmission Line Route Assessment for Prospective Bird Damage to Insulators. CIGRE Symposium Cairns 2001, Paper 200–10

    Google Scholar 

  218. AusNet Services – AMS 10–75 – Transmission Line Insulators – Public – October 2015

    Google Scholar 

  219. N. C. Mavrikakis, P. N. Mikropoulos, K. Siderakis, I. Pellas; E. Thalassinakis: Evaluation of the Damage Caused by Bird Pecking Activity along Composite High Voltage Insulators. 2018 IEEE International Conference on High Voltage Engineering and Application (ICHVE)

    Google Scholar 

  220. INMR: Mitigating Bird Hazards to Overhead Lines https://www.inmr.com/bird-hazards-to-overhead-line-insulator/2021

  221. I. Gutman, E. Solomonik, W. Vosloo: Birds: Threat to Lines & Threatened by Lines. 2012, https://www.inmr.com/birds-threat-lines-threatened-lines-2/2021

  222. D. Barrett: Protecting Overhead Lines & Substations from Wildlife Induced Outages 2015, https://www.inmr.com/protecting-overhead-lines-substations-from-wildlife-induced-outages-2/2021

  223. H. F. Vosloo, A. C. Britten, A. A. Burger: Susceptibility of 400 kV transmission lines to bird streamers and bush fires. Energize. 2011

    Google Scholar 

  224. J. Lachman, P. Jányš, J. Velek, V. Sklenička, J. Brejcha: Research into an increased number of unexplained line outages of polymeric insulator sets used within the Czech transmission grid. CIGRE 2016 Paper B2–208

    Google Scholar 

  225. N. Mahatho, N. Parus, T. Govender, W. S. Miya1, H. F. Vosloo, G. Sibilant: The Effect of Bird Streamers on the Insulation Strength of HVDC Lines. Paper D1–111, CIGRE Paris 2016

    Google Scholar 

  226. J. T. Burnham: Bird streamer flashovers on FPL transmission lines. IEEE Transactions on Power Delivery, Vol. 10, No 2, 1995.

    Google Scholar 

  227. H. Michener: Transmission at 220 kV on the southern California Edison system, AIEE, Vol. XLIII, pages 1223 and 1235, 1924

    Google Scholar 

  228. A. Prenleloup: Analyse de l’état de contrainte et de l’endommagement d’assemblages sertis en matériau mixte métal-composite sollicités en traction ou en flexion. PhD Thesis No. 4005, Ecole polytechnique fédérale de Lausanne, Lausanne, 2008

    Google Scholar 

  229. L. Kollár, G. Springer: Mechanics of Composite Structures. Cambridge University Press, Cambridge, 2003

    Book  Google Scholar 

  230. S. W. Tsai, E. M. Wu: A general theory of strength for anisotropic materials. J Compos Mater, 5 (1), pp. 58-80, 1971.

    Article  Google Scholar 

  231. S. W. Tsai, H. T. Hahn: Introduction to Composite materials. Technomic, Lancester, Pennsylvania, 1980.

    Google Scholar 

  232. I. Burda, A. J. Brunner, M. Barbezat: Mode I fracture testing of pultruded glass fiber reinforced epoxy rods: Test development and influence of precracking method and manufacturing, Engineering Fracture Mechanics 149 (2015) 287–297.

    Article  Google Scholar 

  233. I. Burda, A. J. Brunner, M. Barbezat: Delamination resistance of GFRP‐epoxy rods with nanoparticle‐ and microparticle‐modified matrix and its correlation with the fracture properties of epoxy nanocomposites. Fatigue Fract Eng Mater Struct. 2020; 43:292–307. https://doi.org/https://doi.org/10.1111/ffe.13122

    Article  Google Scholar 

  234. I. Burda, A. J. Brunner, M. Barbezat: The effect of nano- and micron-scale filler modified epoxy matrix on glass-fiber reinforced polymer insulator component behavior. Proc IMechE Part L: J Materials: Design and Applications 2021, Vol. 235(6) 1287–1301, DOI: https://doi.org/10.1177/14644207211000775

    Article  Google Scholar 

  235. E. A. Cherney: 50 years in the development of polymer suspension-type insulators. IEEE Electrical Insulation Magazine, Vol. 29, No. 3, pp. 18–26, May-June 2013, DOI: https://doi.org/10.1109/MEI.2013.6507410

  236. S. Ansorge, K. O. Papailiou: Mechanical properties of silicone rubber under high loadings of alumina trihydrate filler. Journal of Elastomers & Plastics 1–29, 2015, DOI: https://doi.org/10.1177/0095244315580452

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantin O. Papailiou .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Papailiou, K.O., Schmuck, F. (2022). Materialauswahl für Verbundisolatoren mit Silikongummimantel. In: Silikon-Verbundisolatoren. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-64249-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-64249-8_2

  • Published:

  • Publisher Name: Springer Vieweg, Berlin, Heidelberg

  • Print ISBN: 978-3-662-64248-1

  • Online ISBN: 978-3-662-64249-8

  • eBook Packages: Computer Science and Engineering (German Language)

Publish with us

Policies and ethics