Skip to main content

Zur Laborbewertung von Verbundisolatoren nach deren Entnahme aus dem Netz

  • Chapter
  • First Online:
Silikon-Verbundisolatoren

Zusammenfassung

Das Kap. 12 hat die Laborbewertung von gealterten, gebrauchten oder ausgefallenen Leitungs-Verbundisolatoren zum Inhalt. Der Begriff Laborbewertung wird gewählt, weil der Zustand der Isolatoren nicht als On-Line-Diagnose, sondern als Off-Line-Diagnose erfolgt. Für die Bewertung des technischen Zustandes werden verschiedene Konzepte, Methoden und Hilfsmittel beschrieben, die eine Abschätzung der verbleibenden Einsatzdauer von Verbundisolatoren repräsentativ für die untersuchten Typen und/oder Jahrgänge ermöglichen. Die zu bewertenden Verbundisolatoren werden gezielt der Leitung entnommen, um dezidierte Ergebnisse für diese Isolatorengeneration zu erhalten. Es ist festzuhalten, dass die Normung von Verbundisolatoren auch unter interaktiver Berücksichtigung von Freilufterfahrungen einen hohen Reifegrad erreicht hat. Dies ermöglicht es heute, dass aus den Normen, die für die jeweilige Bauartvielfalt sinnvoll anwendbaren Prüfungen zur Diagnose entnommen werden können. Im Vergleich zur 1. Ausgabe wurden der Wissensstand aktualisiert und weitere Beispiele ergänzt. Wann immer möglich, wurde auf die aktuelle Normenlage in IEC und auf Publikationen der CIGRE referenziert.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  1. State of the Art Report On behalf of CIGRE Study Committees 15 and 33 presented by CIGRE WG 33/15.08: Dielectric diagnosis of electrical equipment for AC applications and its effects on insulation coordination. TB 059. 1990

    Google Scholar 

  2. F. Schmuck, J. Seifert, I. Gutman, A. Pigini: Assessment of the condition of overhead line composite insulators. CIGRE Session 2012, Paris, Paper D2–214

    Google Scholar 

  3. R. S. Gorur, T. Orbeck: Surface Dielectric Behavior of Polymeric Insulation under HV Outdoor Conditions. IEEE Transactions on Electrical Insulation Vol. 26 No. 5, October 1991

    Google Scholar 

  4. CIGRE WG B2.21: Guide For The Assessment Of Composite Insulators In The Laboratory After Their Removal From Service. Technical Brochure 481, 2011

    Google Scholar 

  5. CIGRE WG B2.03: Guide for the Assessment of old Cap & Pin and Long-rod Transmission Line Insulators made of Porcelain or Glass: What to do and when to replace. TB 306, 2006

    Google Scholar 

  6. K. O. Papailiou: Grenzflächen bei Silikon-Verbundisolatoren. (Bulletin SEV/VSE 21/1999)

    Google Scholar 

  7. S. M. Gubanski, A. Derfalk, J. Andersson, H. Hillborg: Diagnostic Methods for Outdoor Polymeric Insulators. IEEE Transactions on Dielectrics and Electrical Insulation. Vol. 14, No. 5 October 2007

    Google Scholar 

  8. CIGRE WG B2.03: Guidance for the establishment of naturally polluted insulator testing stations. TB 333, 2007

    Google Scholar 

  9. EPRI Database, presented at the WG-Meeting of CIGRE B2.21 in Winterbach 2008, update in 2011

    Google Scholar 

  10. M. Kuhl: FRP Rods for Brittle Fracture Resistant Composite Insulators. IEEE Transactions on Dielectrics and Electrical Insulation Vol. 8 No. 2, April 2001

    Google Scholar 

  11. J. Montesinos, R. S. Gorur, B. Mobasher, D. Kingsbury: Mechanism of Brittle Fracture in Nonceramic Insulators. IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 9, No. 2, April 2002

    Google Scholar 

  12. J. Montesinos, R. S. Gorur, B. Mobasher, D. Kingsbury: Brittle Fracture in Nonceramic Insulators: Electrical Aspects of Microscopic Flaws in Glass Reinforced Plastic (GRP) Rods. IEEE Transactions on Dielectrics and Electrical Insulation. Vol. 9, No. 2; April 2002

    Google Scholar 

  13. C. de Tourreil, F. Schmuck on behalf of CIGRE Working Group B2.03: Brittle Fractures of Composite Insulators – Field Experience, Occurrence and Risk Assessment. ELECTRA No. 214 June 2004

    Google Scholar 

  14. C. de Tourreil, F. Schmuck on behalf of CIGRE Working Group B2.03: Brittle Fractures of Composite Insulators – Failure Mode Chemistry, Influence of Resin Variations and Search for a Simple Insulator Core Evaluation Test Method. ELECTRA No. 215 August 2004

    Google Scholar 

  15. A. R. Chughtai, D. M. Smith, L. S. Kumosa, M. Kumosa: FTIR Analysis of Non-ceramic Composite Insulators. IEEE Transactions on Dielectrics and Electrical Insulation Vol. 11, No. 4; August 2004

    Google Scholar 

  16. M. Kumosa, L. Kumosa, D. Armentrout: Failure Analyses of Nonceramic Insulators Part 1: Brittle Fracture Characteristics. IEEE Electrical Insulation Magazine May/June 2005, Vol. 21, No. 3

    Google Scholar 

  17. M. Kumosa, L. Kumosa, D. Armentrout: Failure Analyses of Nonceramic Insulators: Part 2: The Brittle Fracture Model and Failure Prevention. IEEE Electrical Insulation Magazine July/August 2005 – Vol. 21, No. 4

    Google Scholar 

  18. L. S. Kumosa, M. S. Kumosa, D. L. Armentrout: Resistance to Brittle Fracture of Glass Reinforced Polymer Composites Used in Composite (Nonceramic) Insulators. IEEE Transactions on Power Delivery, Vol. 20, No. 4, October 2005

    Google Scholar 

  19. IEC TR 62662 Ed. 1: 2010: Guidance for production, testing and diagnostics of polymer insulators with respect to brittle fracture of core materials

    Google Scholar 

  20. CIGRE SC 22 WG 03.01: Worldwide experience with HV composite insulators. ELECTRA 130, December 1990

    Google Scholar 

  21. CIGRE WG 22.03: Worldwide Service Experience with Composite Insulators. ELECTRA 191, August 2000

    Google Scholar 

  22. R. Bonzano, M. Ricca, E. Garbagnati, G. Marrone, A. Pigini: Experimental Research on the Behaviour of HV Cap and Pin Insulator Strings with Failed Units. European Transactions on Electrical Power Volume 1, Issue 1, January/February 1991

    Google Scholar 

  23. A. P. Mishra, R. S. Gorur , S. Venkataraman, D. Kingsbury: Condition assessment of porcelain and toughened glass insulators from residual strength tests. Annual Report Conference on Electrical Insulation and Dielectric Phenomena 2006

    Google Scholar 

  24. A. Rawat, R. S. Gorur: Electrical Strength Reduction of Porcelain Suspension Insulators on AC Transmission Lines. Annual Report Conference on Electrical Insulation Dielectric Phenomena 2008

    Google Scholar 

  25. G. Zhicheng, W. Xiaoxing, J. Zhidong, Z. Ruobin: Application and Research of Composite Insulator in China. INMR Symposium 2011 in Seoul, South Korea

    Google Scholar 

  26. W. L. Vosloo, R. E. Macey, C. De Tourreil: Outdoor High Voltage Insulators. Crown Publications, 2004

    Google Scholar 

  27. X. Liang, S. Li, Y. Gao, Z. Su, J. Zhou: Improving the Outdoor Insulation Performance of Chinese EHV and UHV AC and DC Overhead Transmission Lines. IEEE Electrical Insulation Magazine, Vol. 36, No. 4, 2020

    Google Scholar 

  28. I. Gutman, A. Deckwerth, K. Halsan, M. Leonhardsberger, P. Meyer, L. Diaz, M. Radosavljevic, P. Trenz, K. Varli, K. Välimaa: Application of Composite Insulators: Perceptions vs. Service Experience. 2022 INMR World Congress, Berlin, Germany, October 2022

    Google Scholar 

  29. EPRI Field Guide: Visual Inspection of Polymer Insulators. EPRI, Palo Alto, CA: 2009. 1020289

    Google Scholar 

  30. J. Seifert, R. Bärsch: Bewertung des Designs von Silikon-Verbundisolatoren unter dem Aspekt des lsolierstoffoberflächen- und Fremdschichtverhaltens. RCC-Fachtagung "Werkstoffe für Isolatoren, Überspannungsableiter, Kabelgarnituren, Schaltgeräte, Berlin April 2006, Tagungsband S. 113–124

    Google Scholar 

  31. J. Seifert, R. Bärsch: Design Evaluation of Silicone Rubber Composite lnsulators under the Aspect of Surface Pollution Stress, 15. International Symposium on High Voltage Engineering, Ljubljana, Slovenia, 2007, proceedings

    Google Scholar 

  32. J. M. Seifert, R. Bärsch, W. L. Vosloo: Dimensioning of the Housing Profile of Silicone Rubber Composite lnsulators for Harsh Marine Pollution Conditions, CIGRE Session 2008, Paris, paper D1 - 303

    Google Scholar 

  33. IECIS 61109 Ed. 2: 2008: Composite suspension and tension insulators for a.c. overhead lines with a nominal voltage greater than 1 000 V - Definitions, test methods and acceptance criteria. Neue Ausgabe für 2022 erwartet

    Google Scholar 

  34. ANSI 29.11 2020: American National Standard for Composite Insulators – Test Methods

    Google Scholar 

  35. IEC TS 62073 Ed. 2: 2016: Guidance on the measurement of wettability of insulator surfaces

    Google Scholar 

  36. STRI-Guide 1, 92/1 Hydrophobicity Classification Guide

    Google Scholar 

  37. IIEC IS 60383–1 Ed 4: 1993: Insulators for overhead lines with a nominal voltage above 1000 V – Part 1: Ceramic or glass insulator units for a.c. systems – Definitions, test methods and acceptance criteria, Neue Ausgabe für 2023 erwartet

    Google Scholar 

  38. I. Gutman, E. A. Solomonik, V. N. Solomatov, Y. N. Yashin: Operation and Field Tests of Overhead Line Composite Insulators with Silicone Rubber Cover. 8th International Symposium on High Voltage Engineering, Yokohama, Japan, 23–27 August, 1993, 47.13

    Google Scholar 

  39. S. Berlijn, K. Halsan, I. Gutman, A. Dernfalk: Assessing Ten Years of Service Experience with Composite Line Insulators at HVDC. World Congress & Exhibition on Insulators, Arresters & Bushings, Crete, 11–13 May 2009

    Google Scholar 

  40. A. Gayvoronski: The damages of composite insulators and their on-line diagnostics in service. IWD 047–2008. Presented at CIGRE WG Meeting 2008

    Google Scholar 

  41. CIGRE Task Force 33.04.01: Polluted Insulators: A Review of Current Knowledge. Technical Brochure 158, June 2000

    Google Scholar 

  42. IEC IS 60507 Ed 3: 2013: Artificial pollution tests on high-voltage insulators to be used on a.c. systems

    Google Scholar 

  43. I. Gutman, A. Dernfalk: Pollution tests for polymeric insulators made of hydrophobicity transfer materials. IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 17, Issue 2, pp. 384-393, April 2010

    Google Scholar 

  44. I. Gutman, K. Halsan, J. Seifert, W. Vosloo: Service Experience on Pollution and Ageing of DC Line Composite Insulators: Service/Field Analysis and Laboratory Testing. World Congress & Exhibition on Insulators, Arresters & Bushings, Seoul, Korea, 17–20 April 2011

    Google Scholar 

  45. R. Bärsch, M. Kuhl: Betriebserfahrungen und Untersuchungen an Kunststoffisolatoren in einer 20 kV-Leitung auf der Insel Nordstrand. ETG-Fachbericht 76 (1999), S. 249-257

    Google Scholar 

  46. W. Huiber, K. O. Papailiou, M. Peter, F. Schmuck: Increased Installation Performance and Application Solutions using Composite Insulators – A Manufacturerer`s Philosophy. INMR World Insulator Congress 2001 Shanghai

    Google Scholar 

  47. K. O. Papailiou, M. Peter, W. Fluri, F. Schmuck: A Review of Material Development, recent 420 kV Braced Line Post Designs and Long-term Evaluation of Composite Insulators in Silicone Rubber Technology. INMR Insulator Symposium 2003 Marbella

    Google Scholar 

  48. CIGRE WG C4.03.03: Proposal for the round robin pollution test for polymeric insulators. October 2009

    Google Scholar 

  49. I. Gutman, P. Cardano, A. Dernfalk, J.-M. George, T. Hayashi, K. Kondo, J. Lachman, S. Li, X. Liang, E. Moal, A. Pigini, J. Seifert, E. Solomonik, W. Vosloo, D. Windmar: State-of-the-art of Pollution Test Procedures for Insulators with Hydrophobicity Transfer Materials, CIGRE Science & Engineering. N. 21, June 2021

    Google Scholar 

  50. IEC IS 61621 Ed. 1: 1997: Dry, solid insulating materials - Resistance test to high-voltage, low-current arc discharges

    Google Scholar 

  51. IEC IS 60587 Ed. 4: 2022: Electrical insulating materials used under severe ambient conditions – Test methods for evaluating resistance to tracking and erosion.

    Google Scholar 

  52. IEC IS 62217 Ed 2: 2012: Polymeric insulators for indoor and outdoor use with a nominal voltage > 1 000 V – General definitions, test methods and acceptance criteria. Neue Fassung für 2023 erwartet

    Google Scholar 

  53. DIN EN ISO 4287: 2010: Geometrische Produktspezifikation (GPS) – Oberflächenbeschaffenheit: Tastschnittverfahren – Benennungen, Definitionen und Kenngrößen der Oberflächenbeschaffenheit

    Google Scholar 

  54. R. Bärsch: Bewertung der Hydrophobie sowie des Kriechstromverhaltens von Silikonelastomeren für Hochspannungs-Freiluftisolatoren. ETG-Fachbericht 93 (2003), S. 97-108

    Google Scholar 

  55. R. Cervinka, R. Bärsch, F. Exl, J. Kindersberger, H.-J. Winter: Untersuchungen zur Beständigkeit der Hydrophobie von polymeren Isolierstoffoberflächen und ihrer Wiederkehr mit dem Dynamischen Tropfen-Prüfverfahren ETG-Tagung 2008,

    Google Scholar 

  56. CIGRE WG D1.14: Evaluation of Dynamic Hydrophobicity Properties of Polymeric Materials for Non-Ceramic Outdoor Insulation – Retention and Transfer of Hydrophobicity. TB 442, December 2010

    Google Scholar 

  57. CIGRE WG D1.27: Fingerprinting of polymeric insulating Materials for Outdoor Use. TB 595, Oktober 2014

    Google Scholar 

  58. CIGRE WG D1.14: Material properties for non-ceramic outdoor insulation. State of the art. TB 255, August 2004

    Google Scholar 

  59. IEC TR 62039 Ed. 2: 2021: Selection guide for polymeric materials for outdoor use under HV stress.

    Google Scholar 

  60. ISO 11357–2 Ed. 3: 2020: Plastics – Differential scanning calorimetry (DSC) – Part 2: Determination of glass transition temperature and step height

    Google Scholar 

  61. ISO 11359–2 Ed. 1: 1999: Plastics – Thermomechanical analysis (TMA) – Part 2: Determination of coefficient of linear thermal expansion and glass transition temperature

    Google Scholar 

  62. ISO 6721–11 Ed. 2: 2019: Plastics – Determination of dynamic mechanical properties – Part 11: Glass transition temperature

    Google Scholar 

  63. IEC IS 60815–1 Ed. 1: 2008: Selection and dimensioning of high-voltage insulators intended for use in polluted conditions – Part 1: Definitions, information and general principles, neue Fassung in 2023 erwartet.

    Google Scholar 

  64. J. Seifert, T. Zembsch: Long-term In-service Pollution Performance of Composite Insulators in Arid and Coastal Areas. 2007 GCC CIGRE Conference, Dubai, November 2007, U.A.E

    Google Scholar 

  65. T. Hayashi: Pollution Accumulation and Live-line Washing Withstand Voltage Performance of Silicone Rubber Composite Insulators. B3. Preferential Subject PS1, Question 9. CIGRE 2008

    Google Scholar 

  66. J. Kindersberger, M. Kuhl: Effect of Hydrophobicity on Insulator Performance. 6th ISH New Orleans 1989, Paper 12.01

    Google Scholar 

  67. I. Gutman, H. Wieck, D. Windmar, L. Stenström, D. Gustavsson: Pollution Measurements to Access the Performance of Naturally Exposed Silicone Rubber Composite Insulators, IEEJ Transactions on Fundamentals and Materials, Vol. 127, No. 9, 2007, p.p. 513-518

    Article  Google Scholar 

  68. CIGRE SC 22 WG 22.03: Guide for the Identification of Brittle Fracture of Composite Insulators FRP rod. ELECTRA 143, 1992

    Google Scholar 

  69. IEEE Task Force Report: Brittle Facture in Nonceramic Insulators. IEEE Transactions on Power Delivery, Vol. 17, no. 3, July 2002

    Google Scholar 

  70. S. Ansorge, A. Camendzind, S. E. Pratsinis, M. Ammann, F. Schmuck, K. O. Papailiou: Evaluation of Silicone Rubber Housing Interfaces after Service Exposure and Performance Improvements by Nanofillers enriched Silicone Rubbers. Paper B2–208, CIGRE 2008

    Google Scholar 

  71. F. Schmuck, S. Aitken, K. O. Papailiou: A Proposal for Intensified Inspection and Acceptance Tests of Composite Insulators as an Addition to the Guidelines of IEC 61109 Ed. 2: 2008 and IEC 61952 Ed. 2: 2008. IEEE Transactions on Dielectrics and Electrical Insulation Vol. 17, No. 2; April 2010

    Google Scholar 

  72. M. Kocher: Experience with Silicone Composite Insulators in the Tunnels of BLS Lötschberg. Railway Technology 1993

    Google Scholar 

  73. S. Djafri: Zur getrennten Bewertung der Einflussgrößen auf den Fremdschichtüberschlag von Isolatoren bei Wechselspannung. Dissertation TH Zittau 1995

    Google Scholar 

  74. J. Pilling, L. Berndt: Flashover voltage and flashover current of polluted insulators. 7th ISH Dresden, August 1991, Paper 43.12

    Google Scholar 

  75. V. Sklenicka, I., Zeman: Utilization and service experience with composite insulators in Czech power system. Proceedings of World Congress & Exhibition on Insulators, Arresters & Bushings – Shanghai, November 2001

    Google Scholar 

  76. C. Baer, F. Schmuck, J. Strumbelj, E. Tinner, J. Lachman, S. Kornhuber, J. T. Loh: Technical Demands to Improve Today`s Composite Insulator Reliability. CIGRE Session 2020, Paper B2–211

    Google Scholar 

  77. CIGRE WG B2.57: Application Guide for Composite Insulators. TB xyz, to be published in 2022

    Google Scholar 

  78. I. Gutman, A. Dernfalk, V. Malinen, M. Radosavljevic, K. Varli: Critical Review on Biological Growth on Composite Insulators in Northern and Central European Environments: Evaluation of Risk for Pollution Flashover and Ageing. CIGRE Science and Engineering No. 22, October 2021

    Google Scholar 

  79. M. A. Mbwana: Laboratory and field performance of polymeric composite insulators and RTV coatings. Doctoral thesis. Royal Institute of Technology, Department of Electric Power Engineering, Sweden, 1997

    Google Scholar 

  80. C. Baer, F. Schmuck, J. Strumbelj, E. Tinner, J. Lachman, S. Kornhuber, J. T. Loh: Technical Demands to Improve Today`s Composite Insulator Reliability. CIGRE Centennial Session 2021, Paper B2–211

    Google Scholar 

  81. F. Kiessling, R. Puschmann, A. Schmieder, P. A. Schmidt: Fahrleitungen elektrischer Bahnen: Planung, Berechnung, Ausführung. (2. Auflage). Vieweg+Teubner: Wiesbaden. 1998

    Google Scholar 

  82. A. Meyna, B. Pauli: Taschenbuch der Zuverlässigkeits- und Sicherheitstechnik – Quantitative Bewertungsverfahren. Hanser Verlag, Praxisreihe Qualitätswissen 2003

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantin O. Papailiou .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Papailiou, K.O., Schmuck, F. (2022). Zur Laborbewertung von Verbundisolatoren nach deren Entnahme aus dem Netz. In: Silikon-Verbundisolatoren. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-64249-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-64249-8_12

  • Published:

  • Publisher Name: Springer Vieweg, Berlin, Heidelberg

  • Print ISBN: 978-3-662-64248-1

  • Online ISBN: 978-3-662-64249-8

  • eBook Packages: Computer Science and Engineering (German Language)

Publish with us

Policies and ethics