Skip to main content

Zusammenfassung

Dieses Kapitel befasst sich mit zwei zukunftsweisenden Technologien – Augmented Reality und Gamification – die in besonderem Maße zu einer spielerischen Umsetzung von Therapien beitragen können. Dadurch können die Motivation und Beteiligung der Patienten in der Therapie gesteigert werden. Für den zukünftigen Einsatz in außerklinischen Therapiesettings können diese Technologien eine Schlüsselrolle spielen. Im diesem Kapitel werden die Grundlagen zu den beiden Themen dargestellt. Des Weiteren wird ein Überblick über den derzeitigen Stand der Entwicklungen gegeben und gängige Spielesysteme in der Neurorehabilitation und verwendete Geräte vorgestellt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Motion-Sickness (auch Kinetose) entsteht durch Diskrepanz von visuellen, vestibulären und propriozeptiven Informationen (Waldfahrer F. (2016). Kinetose [Online]. Pschyrembel online. Available: 7 https://www.pschyrembel.de/Kinetose/K0BPE/doc/ [Accessed 27.08.2019 2019].).

  2. 2.

    gefördert durch das Bundesministerium für Bildung und Forschung, Förderkennzeichen 16SV7849.

Literatur

  • Ahn D, Chung H, Lee HW, Kang K, Ko PW, Kim NS, Park T (2017) Smart gait-aid glasses for Parkinson's disease patients. IEEE Trans Biomed Eng 64:2394–2402

    Article  PubMed  Google Scholar 

  • de Araujo AVL, Neiva JFO, Monteiro CBM, Magalhaes FH (2019) Efficacy of virtual reality rehabilitation after spinal cord injury: a systematic review. Biomed Res Int 2019:7106951

    Article  PubMed  PubMed Central  Google Scholar 

  • Azuma R, Baillot Y, Behringer R, Feiner S, Julier S, Macintyre B (2001) Recent advances in augmented reality. IEEE Comput Graphics Appl. Comput Graphics Appl IEEE 21:34–47

    Article  Google Scholar 

  • Bacca J, Baldiris S, Fabregat R, Graf S, Kinshuk (2014) Augmented reality trends in education: a systematic review of research and applications. Educ Technol Soc 17:133–149

    Google Scholar 

  • Bonnechère B, Jansen B, Omelina L, Van Sint JS (2016) The use of commercial video games in rehabilitation: a systematic review. Int J Rehabil Res 39:277–290

    Article  PubMed  Google Scholar 

  • Colomer C, Llorens R, Noe E, Alcaniz M (2016) Effect of a mixed reality-based intervention on arm, hand, and finger function on chronic stroke. J Neuroeng Rehabil 13:45

    Article  PubMed  PubMed Central  Google Scholar 

  • Cugelman B (2013) Gamification: what it is and why it matters to digital health behavior change developers. JMIR Serious Games 1:e3

    Article  PubMed  PubMed Central  Google Scholar 

  • de Crignis A, Ruhnau S, Lefint J, Ilg W, Hösl M, Amberger T, Dressnandt J, Brunner H, Müller F (in prep.) Robotic arm training in neurorehabilitation enhanced by augmented reality

    Google Scholar 

  • Deterding, S, Dixon D, Khaled R, Nacke L (2011) From game design elements to gamefulness: defining „gamification“. In Proceedings of the 15th international academic MindTrek conference: Envisioning future media environments (pp. 9–15)

    Google Scholar 

  • Danielle, Levac L, Rivard C, Missiuna (2012) Defining the active ingredients of interactive computer play interventions for children with neuromotor impairments: A scoping review. Research in Developmental Disabilities 33(1):214–223. S089142221100343X https://doi.org/10.1016/j.ridd.2011.09.007

  • Fuchs D, Knauer M, Egger M, Friedrich P (2020) Audio feedback for device-supported balance training: parameter mapping and influencing factors. Acoustics 2(3):650–665. MDPI, Basel (Schweiz)

    Google Scholar 

  • Gorman C, Gustafsson L (2020) The use of augmented reality for rehabilitation after stroke: a narrative review. Disabil Rehabil Assist Technol 17(4):409–417

    Google Scholar 

  • Grunert R, Krause A, Feig S, Meixensberger J, Rotsch C, Drossel WG, Themann P, Winkler D (2019) A technical concept of a computer game for patients with Parkinson's disease – a new form of PC-based physiotherapy. Int J Neurosci 129:770–775

    Article  PubMed  Google Scholar 

  • Held JPO, Yu K, Pyles C, Veerbeek JM, Bork F, Heining SM, Navab N, Luft AR (2020) Augmented reality-based rehabilitation of gait impairments: case report. JMIR Mhealth Uhealth 8:e17804

    Article  PubMed  PubMed Central  Google Scholar 

  • Höhler C, Rasamoel ND, Rohrbach N, Hansen JP, Jahn K, Hermsdörfer J & Krewer C (2021) The impact of visuospatial perception on distance judgement and depth perception in an Augmented Reality environment in patients agter stroke: the SPiAR study. JNER 18(1):1–17

    Google Scholar 

  • Lopes S, Magalhaes P, Pereira A, Martins J, Magalhaes C, Chaleta E, Rosario P (2018) Games used with serious purposes: a systematic review of interventions in patients with cerebral palsy. Front Psychol 9:1712

    Article  PubMed  PubMed Central  Google Scholar 

  • Maier M, Ballester BR, Verschure PFMJ (2019) Principles of neurorehabilitation after stroke based on motor learning and brain plasticity mechanisms. Front Syst Neurosci 13:74

    Google Scholar 

  • Milgram P, Kishino F (1994) A taxonomy of mixed reality visual displays. IEICE Transactions on Information Systems, E77-D

    Google Scholar 

  • Mousavi Hondori H, Khademi M, Dodakian L, Cramer SC, Lopes CV (2013) A spatial augmented reality rehab system for post-stroke hand rehabilitation. Stud Health Technol Inform 184:279–285

    PubMed  Google Scholar 

  • Mubin O, Alnajjar F, Jishtu N, Alsinglawi B, Al Mahmud A (2019) Exoskeletons with virtual reality, augmented reality, and gamification for stroke patients’ rehabilitation: systematic review. JMIR Rehabil Assist Technol 6:e12010

    Article  PubMed  PubMed Central  Google Scholar 

  • Nuic D, Vinti M, Karachi C, Foulon P, Van Hamme A, Welter ML (2018) The feasibility and positive effects of a customised videogame rehabilitation programme for freezing of gait and falls in Parkinson's disease patients: a pilot study. J Neuroeng Rehabil 15:31

    Article  PubMed  PubMed Central  Google Scholar 

  • Ortiz-Catalan M, Guðmundsdóttir RA, Kristoffersen MB, Zepeda-Echavarria A, Caine-Winterberger K, Kulbacka-Ortiz K, Widehammar C, Eriksson K, Stockselius A, Ragnö C, Pihlar Z, Burger H, Hermansson L (2016) Phantom motor execution facilitated by machine learning and augmented reality as treatment for phantom limb pain: a single group, clinical trial in patients with chronic intractable phantom limb pain. Lancet 388:2885–2894

    Article  PubMed  Google Scholar 

  • Pietrzak E, Pullman S, McGuire A (2014) Using virtual reality and videogames for traumatic brain injury rehabilitation: a structured literature review. Games Health J 3:202–214

    Article  PubMed  Google Scholar 

  • Rapoliene J, Endzelyte E, Jaseviciene I, Savickas R (2018) Stroke patients motivation influence on the effectiveness of occupational therapy. Rehabil Res Pract 2018:9367942

    PubMed  PubMed Central  Google Scholar 

  • Rohrbach N, Chicklis E, Levac DE (2019a) What is the impact of user affect on motor learning in virtual environments after stroke? A scoping review. J Neuroeng Rehabil 16:1–14

    Article  Google Scholar 

  • Rohrbach N, Gulde P, Armstrong AR, Hartig L, Abdelrazeq A, Schroder S, Neuse J, Grimmer T, Diehl-Schmid J, Hermsdorfer J (2019b) An augmented reality approach for ADL support in Alzheimer's disease: a crossover trial. J Neuroeng Rehabil 16:66

    Article  PubMed  PubMed Central  Google Scholar 

  • Rohrbach N, Krewer C, Löhnert L, Thierfelder A, Randerath J, Jahn K & Hermsdörfer. J (2021) Improvement of apraxia with augmented reality: influencing pantomime of tool use via holographic cues. Front Neurol.,1491

    Google Scholar 

  • Rothgangel A, Bekrater-Bodmann R (2019) Mirror therapy versus augmented/virtual reality applications: towards a tailored mechanism-based treatment for phantom limb pain. Pain Manag 9:151–159

    Article  PubMed  Google Scholar 

  • Sailer M, Hense JU, Mayr SK, Mandl H (2017) How gamification motivates: an experimental study of the effects of specific game design elements on psychological need satisfaction. Comput Hum Behav 69:371–380

    Article  Google Scholar 

  • Saposnik G, Cohen LG, Mamdani M, Pooyania S, Ploughman M, Cheung D, Shaw J, Hall J, Nord P, Dukelow S, Nilanont Y, De Los Rios F, Olmos L, Levin M, Teasell R, Cohen A, Thorpe K, Laupacis A, Bayley M, Stroke Outcomes Research C (2016) Efficacy and safety of non-immersive virtual reality exercising in stroke rehabilitation (EVREST): a randomised, multicentre, single-blind, controlled trial. Lancet Neurol 15:1019–1027

    Article  PubMed  PubMed Central  Google Scholar 

  • Schmitz G, Bergmann J, Effenberg AO, Krewer C, Hwang T-H, Müller F (2018) Movement sonification in stroke rehabilitation. Front Neurol 9:389

    Article  PubMed  PubMed Central  Google Scholar 

  • Slater M (2018) Immersion and the illusion of presence in virtual reality. Br J Psychol 109:431–433

    Article  PubMed  Google Scholar 

  • Vovk A, Wild F, Guest W, Kuula T (2018) Simulator sickness in augmented reality training using the Microsoft HoloLens. In: Proceedings of the 2018 CHI conference on human factors in computing systems. ACM, Montreal

    Google Scholar 

  • Waldfahrer F (2016) Kinetose [Online]. Pschyrembel online. https://www.pschyrembel.de/Kinetose/K0BPE/doc/. Zugegriffen am 27.08.2019 2019

  • Wulf G, Lewthwaite R (2016) Optimizing performance through intrinsic motivation and attention for learning: the OPTIMAL theory of motor learning. Psychon Bull Rev 23:1382–1414

    Article  PubMed  Google Scholar 

  • Yates M, Kelemen A, Sik Lanyi C (2016) Virtual reality gaming in the rehabilitation of the upper extremities post-stroke. Brain Inj 30:855–863

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandra de Crignis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

de Crignis, A., Müller, F. (2023). Augmented Reality und Gamification. In: Groß, M., Hennig, B., Kappel, S., Wallhoff, F. (eds) Assistive Technologien, technische Rehabilitation und Unterstützte Kommunikation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-64118-7_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-64118-7_23

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-64117-0

  • Online ISBN: 978-3-662-64118-7

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics