Skip to main content

Rethinking Genetics

  • Chapter
  • First Online:
Genes, Genomes and Society
  • 593 Accesses

Abstract

Several developments and findings in the life sciences demand that we think about genetics in a completely new, or at least different, way. We know better than ever that our environment and our genes are closer to each other than we have suspected. This is what epigenetics, which I highlight in Sect. 8.1, teaches us. It is without doubt one of the most exciting areas of genetics and offers, for those who need it, a molecular biological basis for our responsibility for future generations (Fig. 8.1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nelkin D, Lindee MS (2004) The DNA mystique: The gene as a cultural icon. University of Michigan Press, Ann Arbor, Michigan/USA. doi:https://doi.org/10.3998/mpub.6769

  2. Tucci V, Isles AR, Kelsey G, et al (2019) Genomic Imprinting and Physiological Processes in Mammals. Cell 176: 952–965. doi:https://doi.org/10.1016/j.cell.2019.01.043

    Article  CAS  PubMed  Google Scholar 

  3. Gustafsson Å (1979) Linnaeus’ Peloria: The history of a monster. Theor Appl Genet 54: 241–248. doi:https://doi.org/10.1007/BF00281206

    Article  CAS  PubMed  Google Scholar 

  4. Goethe JW (1820) Nacharbeiten und Sammlungen. In: Troll IW: Goethes Morphologische Schriften Jena

    Google Scholar 

  5. Cubas P, Vincent C, Coen E (1999) An epigenetic mutation responsible for natural variation in floral symmetry. Nature 401:157–161. doi:https://doi.org/10.1038/43657

    Article  CAS  PubMed  Google Scholar 

  6. Bygren LO, Kaati G, Edvinsson S (2001) Longevity determined by paternal ancestors’ nutrition during their slow growth period. Acta Biotheor 49: 53–59

    Article  CAS  PubMed  Google Scholar 

  7. Kaati G, Bygren LO, Edvinsson S (2002) Cardiovascular and diabetes mortality determined by nutrition during parents’ and grandparents’ slow growth period. Eur J Hum Genet 10: 682–688. doi:https://doi.org/10.1038/sj.ejhg.5200859

    Article  CAS  PubMed  Google Scholar 

  8. Ehrlich M, Wang R (1981) 5-Methylcytosine in eukaryotic DNA. Science 212: 1350–1357. doi:https://doi.org/10.1126/science.6262918

    Article  CAS  PubMed  Google Scholar 

  9. Graham L (2016) Lysenko’s Ghost. Harvard University Press, Cambridge, Massachusetts/USA

    Book  Google Scholar 

  10. Edith Heard RAM (2014) Transgenerational Epigenetic Inheritance: myths and mechanisms. Cell 157: 95–109. doi:https://doi.org/10.1016/j.cell.2014.02.045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nakamura T, Liu Y-J, Nakashima H, et al (2012) PGC7 binds histone H3K9me2 to protect against conversion of 5mC to 5hmC in early embryos. Nature 486: 415–419. doi:https://doi.org/10.1038/nature11093

    Article  CAS  PubMed  Google Scholar 

  12. Eaton SA, Jayasooriah N, Buckland ME, et al (2015) Roll over Weismann: extracellular vesicles in the transgenerational transmission of environmental effects. Epigenomics 7: 1165–1171. doi:https://doi.org/10.2217/epi.15.58

    Article  CAS  PubMed  Google Scholar 

  13. Chen Q, Yan W, Duan E (2016) Epigenetic inheritance of acquired traits through sperm RNAs and sperm RNA modifications. Nat Rev Genet 17: 733–743. doi:https://doi.org/10.1038/nrg.2016.106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fernandes J, Arida RM, Gomez-Pinilla F (2017) Physical exercise as an epigenetic modulator of brain plasticity and cognition. Neurosci Biobehav Rev 80: 443–456. doi:https://doi.org/10.1016/j.neubiorev.2017.06.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ingerslev LR, Donkin I, Fabre O, et al (2018) Endurance training remodels sperm-borne small RNA expression and methylation at neurological gene hotspots. Clin Epigenet 10: 12. doi:https://doi.org/10.1186/s13148-018-0446-7

    Article  CAS  Google Scholar 

  16. McGreevy KR, Tezanos P, Ferreiro-Villar I, et al (2019) Intergenerational transmission of the positive effects of physical exercise on brain and cognition. Proc Natl Acad Sci USA 3: 201816781. doi:https://doi.org/10.1073/pnas.1816781116

    Article  CAS  Google Scholar 

  17. Weaver ICG, Cervoni N, Champagne FA, et al (2004) Epigenetic programming by maternal behavior. Nat Neurosci 7: 847–854. doi:https://doi.org/10.1038/nn1276

    Article  CAS  PubMed  Google Scholar 

  18. Soffritti G, Busconi M, Sánchez R, et al (2016) Genetic and Epigenetic Approaches for the Possible Detection of Adulteration and Auto-Adulteration in Saffron (Crocus sativus L.) Spice. Molecules 21: 343. doi:https://doi.org/10.3390/molecules21030343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hong E, Lee SY, Jeong JY, et al (2017) Modern analytical methods for the detection of food fraud and adulteration by food category. J Sci Food Agric 97: 3877–3896. doi:https://doi.org/10.1002/jsfa.8364

    Article  CAS  PubMed  Google Scholar 

  20. Manikkam M, Guerrero-Bosagna C, Tracey R, et al (2012) Transgenerational Actions of Environmental Compounds on Reproductive Disease and Identification of Epigenetic Biomarkers of Ancestral Exposures. PLoS One 7: e31901. doi:https://doi.org/10.1371/journal.pone.0031901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Schmidt F, Cherepkova MY, Platt RJ (2018) Transcriptional recording by CRISPR spacer acquisition from RNA. Nature 562: 380–385. doi:https://doi.org/10.1038/s41586-018-0569-1

    Article  CAS  PubMed  Google Scholar 

  22. Pulecio J, Verma N, Mejía-Ramírez E, et al (2017) CRISPR/Cas9-Based Engineering of the Epigenome. Cell Stem Cell 21: 431–447. doi:https://doi.org/10.1016/j.stem.2017.09.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kelly AD, Issa J-PJ (2017) The promise of epigenetic therapy: reprogramming the cancer epigenome. Curr Opin Genet Dev 42: 68–77. doi:https://doi.org/10.1016/j.gde.2017.03.015

    Article  CAS  PubMed  Google Scholar 

  24. Eraslan G, Avsec Ž, Gagneur J, Theis FJ (2019) Deep learning: new computational modelling techniques for genomics. Nat Rev Genet 278: 601. doi:https://doi.org/10.1038/s41576-019-0122-6

    Article  CAS  Google Scholar 

  25. Rudzio K (2018) Künstliche Intelligenz: Wenn der Roboter die Fragen stellt. Die Zeit 35:22

    Google Scholar 

  26. Gurovich Y, Hanani Y, Bar O, et al (2019) Identifying facial phenotypes of genetic disorders using deep learning. Nat Med 25: 60–64. doi:https://doi.org/10.1038/s41591-018-0279-0

    Article  CAS  PubMed  Google Scholar 

  27. Antonini G (1900) I precursori di C. Lombroso. Fratelli Bocca Editori, Torino/IT

    Google Scholar 

  28. Alipanahi B, Delong A, Weirauch MT, Frey BJ (2015) Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning. Nat Biotechnol 33: 831–838. doi:https://doi.org/10.1038/nbt.3300

    Article  CAS  PubMed  Google Scholar 

  29. Zhou J, Theesfeld CL, Yao K, et al (2018) Deep learning sequence-based ab initio prediction of variant effects on expression and disease risk. Nat Genet 50: 1171–1179. doi:https://doi.org/10.1038/s41588-018-0160-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Geib C (2019) A Chinese province is sequencing 1 million of its residents’ genomes. In: NeoScope. Visited 14.04.2019: futurism.com/chinese-province-sequencing-1-million-residents-genomes

  31. Bycroft C, Freeman C, Petkova D, et al (2018) The UK Biobank resource with deep phenotyping and genomic data. Nature 562: 203–209. doi:https://doi.org/10.1038/s41586-018-0579-z

    Article  CAS  PubMed  Google Scholar 

  32. Sirugo G, Williams SM, Tishkoff SA (2019) The Missing Diversity in Human Genetic Studies. Cell 177: 26–31. doi:https://doi.org/10.1016/j.cell.2019.02.048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mirsky Y, Mahler T, Shelef I, Elovici Y (2019) CT-GAN: Malicious Tampering of 3D Medical Imagery using Deep Learning. arxiv.org/abs/1901.03597

    Google Scholar 

  34. Valles-Colomer M, Falony G, Darzi Y, et al (2019) The neuroactive potential of the human gut microbiota in quality of life and depression. Nat Microbiol 13: 1–13. doi:https://doi.org/10.1038/s41564-018-0337-x

    Article  CAS  Google Scholar 

  35. Abraham C (2002) Gene pioneer urges dream of human perfection. In: The Globe and Mail. Visited 18.04.2019: theglobeandmail.com/technology/gene-pioneer-urges-dream-of-human-perfection/article22734105/

  36. Weber-Lehmann J, Schilling E, Gradl G, et al (2014) Finding the needle in the haystack: Differentiating “identical” twins in paternity testing and forensics by ultra-deep next generation sequencing. Forensic Sci Int: Genet 9: 42–46. doi:https://doi.org/10.1016/j.fsigen.2013.10.015

    Article  CAS  PubMed  Google Scholar 

  37. Fontdevila A (2011) The Dynamic Genome. Oxford University Press, Oxford/UK

    Book  Google Scholar 

  38. Carretero-Paulet L, Librado P, Chang T-H, et al (2015) High Gene Family Turnover Rates and Gene Space Adaptation in the Compact Genome of the Carnivorous Plant Utricularia gibba. Mol Biol Evol 32: 1284–1295. doi:https://doi.org/10.1093/molbev/msv020

    Article  CAS  PubMed  Google Scholar 

  39. Bodea GO, McKelvey EGZ, Faulkner GJ (2018) Retrotransposon-induced mosaicism in the neural genome. Open Biol 8: 180074. doi:https://doi.org/10.1098/rsob.180074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Locke DP, Hillier LW, Warren WC, et al (2011) Comparative and demographic analysis of orang-utan genomes. Nature 469: 529–533. doi:https://doi.org/10.1038/nature09687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dunning LT, Olofsson JK, Parisod C, et al (2019) Lateral transfers of large DNA fragments spread functional genes among grasses. Proc Natl Acad Sci USA 116: 4416–4425. doi:https://doi.org/10.1073/pnas.1810031116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Byrne K, Nichols RA (1999) Culex pipiens in London Underground tunnels: differentiation between surface and subterranean populations. Heredity 82: 7–15. doi:https://doi.org/10.1038/sj.hdy.6884120

    Article  PubMed  Google Scholar 

  43. Neafsey DE, Waterhouse RM, Abai MR, et al (2015) Highly evolvable malaria vectors: The genomes of 16 Anopheles mosquitoes. Science 347: 1258522. doi:https://doi.org/10.1126/science.1258522

    Article  CAS  PubMed  Google Scholar 

Further Reading

  • Kammerer P (1913) Sind wir Sklaven der Vergangenheit oder Werkmeister der Zukunft? Anzengruber-Verlag Brüder Suschitzky, Wien, Leipzig.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Röbbe Wünschiers .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wünschiers, R. (2022). Rethinking Genetics. In: Genes, Genomes and Society. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-64081-4_8

Download citation

Publish with us

Policies and ethics