Skip to main content

Writing Genetic Material

  • Chapter
  • First Online:
Genes, Genomes and Society
  • 540 Accesses

Abstract

While in the previous sections we learned about very concrete interventions in the genetic material of organisms, things are now getting a little more utopian—but only a little. The latest methods of genetic engineering involve not only the precise modification of the genetic material without leaving traces, but also the completely chemical synthesis of genetic information. The DNA molecule can thus be synthesized in a test tube. This is nothing new: Old DNA synthesis devices can be obtained on eBay for relatively little money (Fig. 6.1). However, the technology is becoming more sophisticated. The currently available phosphoramidite-based chemical synthesis can generate fragments around 250 nucleotides long. With the development of newer methods, fragment lengths are becoming much larger [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Palluk S, Arlow DH, de Rond T, et al (2018) De novo DNA synthesis using polymerase-nucleotide conjugates. Nat Biotechnol 36: 645–650. doi:https://doi.org/10.1038/nbt.4173

    Article  CAS  PubMed  Google Scholar 

  2. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74: 5463–5467. doi:https://doi.org/10.1073/pnas.74.12.5463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Smith HO, Hutchison CA, Pfannkoch C, Venter JC (2003) Generating a synthetic genome by whole genome assembly: ϕX174 bacteriophage from synthetic oligonucleotides. Proc Natl Acad Sci USA 100: 15440–15445. doi:https://doi.org/10.1073/pnas.2237126100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gibson DG, Glass JI, Lartigue C, et al (2010) Creation of a bacterial cell controlled by a chemically synthesized genome. Science 329: 52–56. doi:https://doi.org/10.1126/science.1190719

    Article  CAS  PubMed  Google Scholar 

  5. Drux R (2017) “Eine höchst vollkommene Maschine”: Von der poetischen Faszination einer mechanischen Ente im späten achtzehnten Jahrhundert. In: Zwischen Literatur und Naturwissenschaft. Walter de Gruyter Verlag, Berlin. S. 105–118. doi:https://doi.org/10.1515/9783110528114-005

    Book  Google Scholar 

  6. Kunert G (1989) Tagträume in Berlin und andernorts. Fischer Taschenbuch Verlag, Frankfurt

    Google Scholar 

  7. Romagné F, Santesmasses D, White L, et al (2014) SelenoDB 2.0: Annotation of selenoprotein genes in animals and their genetic diversity in humans. Nucleic Acids Res 42: D437–D443. doi:https://doi.org/10.1093/nar/gkt1045

    Article  CAS  PubMed  Google Scholar 

  8. Reeves MA, Hoffmann PR (2009) The human selenoproteome: Recent insights into functions and regulation. Cell Mol Life Sci 66: 2457–2478. doi:https://doi.org/10.1007/s00018-009-0032-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Xie J, Schultz PG (2006) A chemical toolkit for proteins—an expanded genetic code. Nat Rev Mol Cell Biol 7: 775–782. doi:https://doi.org/10.1038/nrm2005

    Article  CAS  PubMed  Google Scholar 

  10. Neumann H, Wang K, Davis L, et al (2010) Encoding multiple unnatural amino acids via evolution of a quadruplet- decoding ribosome. Nature 464: 441–444. doi:https://doi.org/10.1038/nature08817

  11. Hoshika S, Leal NA, Kim M-J, et al (2019) Hachimoji DNA and RNA: A genetic system with eight building blocks. Science 363: 884–887. doi:https://doi.org/10.1126/science.aat0971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Loeb J (1912) The Mechanistic Conception of Life. The University of Chicago Press, Chicago, Illinois/USA

    Google Scholar 

  13. Smith CJ, Castanon O, Said K, et al (2019) Enabling large-scale genome editing by reducing DNA nicking. bioRxiv 5: 574020. doi:https://doi.org/10.1101/574020

  14. Niu D, Wei H-J, Lin L, et al (2017) Inactivation of porcine endogenous retrovirus in pigs using CRISPR-Cas9. Science 357: 1303–1307. doi:https://doi.org/10.1126/science.aan4187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Łopata K, Wojdas E, Nowak R, et al (2018) Porcine Endogenous Retrovirus (PERV)—Molecular Structure and Replication Strategy in the Context of Retroviral Infection Risk of Human Cells. Front Microbiol 9: 432. doi:https://doi.org/10.3389/fmicb.2018.00730

    Article  Google Scholar 

  16. Wright DWM (2018) Cloning animals for tourism in the year 2070. Futures 95: 58–75. doi:https://doi.org/10.1016/j.futures.2017.10.002

    Article  Google Scholar 

  17. Folch J, Cocero MJ, Chesné P, et al (2009) First birth of an animal from an extinct subspecies (Capra pyrenaica pyrenaica) by cloning. Theriogenology 71: 1026–1034. doi:https://doi.org/10.1016/j.theriogenology.2008.11.005

    Article  CAS  PubMed  Google Scholar 

  18. Crichton M (1991) Dinopark. Droemer Knaur Verlag, München

    Google Scholar 

  19. Griffn DK, Larkin DM, O’Connor RE (2019) Time lapse: A glimpse into prehistoric genomics. Eur J Med Genet. doi:https://doi.org/10.1016/j.ejmg.2019.03.004

  20. Ro D, Paradise E, Ouellet M, et al (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440: 940–943. doi:https://doi.org/10.1038/nature04640

    Article  CAS  PubMed  Google Scholar 

  21. Hommel M (2008) The future of artemisinins: natural, synthetic or recombinant? J Biol 7: 38. doi:https://doi.org/10.1186/jbiol101

    Article  PubMed  PubMed Central  Google Scholar 

  22. Peplow M (2016) Synthetic biology’s first malaria drug meets market resistance. Nature 530: 389–390. doi:https://doi.org/10.1038/530390a

    Article  CAS  PubMed  Google Scholar 

  23. Westfall PJ, Pitera DJ, Lenihan JR, et al (2012) Production of amorphadiene in yeast, and its conversion to dihydroartemisinic acid, precursor to the antimalarial agent artemisinin. Proc Natl Acad Sci USA 109: E111–8. doi:https://doi.org/10.1073/pnas.1110740109

    Article  PubMed  PubMed Central  Google Scholar 

  24. Paddon CJ, Westfall PJ, Pitera DJ, et al (2013) High-level semi-synthetic production of the potent antimalarial artemisinin. Nature 496: 528–532. doi:https://doi.org/10.1038/nature12051

    Article  CAS  PubMed  Google Scholar 

  25. Hutchison CA, Chuang R-Y, Noskov VN, et al (2016) Design and synthesis of a minimal bacterial genome. Science 351: aad6253. doi:https://doi.org/10.1126/science.aad6253

  26. Elowitz MB, Leibler S (2000) A synthetic oscillatory network of transcriptional regulators. Nature 403: 335–338. doi:https://doi.org/10.1038/35002125

    Article  CAS  PubMed  Google Scholar 

  27. Pedersen M, Phillips A (2009) Towards programming languages for genetic engineering of living cells. J R Soc, Interface 6: S437–S450. doi:https://doi.org/10.1098/rsif.2008.0516.focus

    Article  CAS  PubMed  Google Scholar 

  28. Sturtevant AH (1923) Inheritence of direction of coiling in Limnaea. Science 58: 269–270. doi:https://doi.org/10.1126/science.58.1501.269

    Article  CAS  PubMed  Google Scholar 

  29. Tumpey TM (2005) Characterization of the Reconstructed 1918 Spanish Influenza Pandemic Virus. 310: 77–80. doi:https://doi.org/10.1126/science.1119392

Further Reading

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Röbbe Wünschiers .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wünschiers, R. (2022). Writing Genetic Material. In: Genes, Genomes and Society. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-64081-4_6

Download citation

Publish with us

Policies and ethics