Skip to main content

Meteorite

  • Chapter
  • First Online:
Mineralogie

Zusammenfassung

Meteorite sind Bruchstücke extraterrestrischer Körper, die den Flug durch die Erdatmosphäre überlebt haben und auf der Erdoberfläche aufschlugen. Die Meteoriten stammen aus drei verschiedenen Quellen. In ihrer weit überwiegenden Mehrzahl (bisher >60.000) stellen Meteoriten Bruchstücke von kollidierten planetarischen Körpern dar, die den Asteroidengürtel bilden. In dieser Zone unseres Sonnensystems, die sich im Wesentlichen zwischen den Umlaufbahnen der Planeten Mars und Jupiter befindet, rotieren unzählige Kleinstplaneten und ihre Fragmente um die Sonne (Abschn. 32.2 ).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • Alvarez LW, Alvarez W, Asaro F, Michel HV (1980) Extraterrestrial cause for the Creataceous Tertiary extinction. Science 208:1095–1108

    Article  Google Scholar 

  • Amelin Y (2008) U-Pb ages of angrites. Geochim Cosmochim Acta 72:221–232

    Article  Google Scholar 

  • Amelin Y, Krot AN, Hutcheon ID, Ulyanov AA (2002) Lead isotopic ages of chondrules and calcium-aluminum-rich inclusions. Science 297:1678–1683

    Article  Google Scholar 

  • Barrat J-AMC, Yamaguchi A, Beck P, Villeneuve J, Byrne DJ, Broadley MW, Marty B (2021) A 4,565-My-old andesite from an extinct chondritic protoplanet. PNAS 118:e2026129118

    Google Scholar 

  • Baziotis IP, Liu Y, DeCarli PS, Melosh HJ, McSween JB, Taylor LA (2013) The Tissint Martian meteorite as evidence for the largest impact excavation. Nature Commun 4:1404

    Google Scholar 

  • Becker L, Poreda RJ, Hunt AG, Bunch TE, Rampino M (2001) Impact event at the Permian-Triassic boundary: evidence from extraterrestrial noble gases in fullerenes. Science 291:1530–1533

    Article  Google Scholar 

  • Bindi L, Steinhardt PJ, Nan Y, Lu PJ (2011) Icosahedrite, Al63Cu24Fe13, the first natural quasi-crystal. Am Mineral 96:928–931

    Article  Google Scholar 

  • Bischoff A (2001) Meteorite classification and the definition of new chondrite classes as a result of recent meteorite search expeditions in hot and cold deserts. Planet Space Sci 49:769–776

    Article  Google Scholar 

  • Bischoff A, Keil K (1983) Ca-Al-rich chondrules and inclusions in ordinary chondrites. Nature 303:588–592

    Article  Google Scholar 

  • Bischoff A, Horstmann M, Vollmer C, Heimann U, Decker S (2013) Chelyabinsk – not only another ordinary LL5 chondrite, but a spectacular chondrite breccia. Meteorit Suppl 48(5171):A61

    Google Scholar 

  • Bischoff A und 40 Koautoren (2021) The old, unique C1 chondrite Flensburg – insight into the first process of aqueous alteration, brecciation, and the diversity of water-bearing parent bodies and lithologies. Geochim Cosmochim Acta 293:142–186

    Google Scholar 

  • Bogard DD (2011) K-Ar ages of meteorites: clues to parent body thermal histories. Chem Erde 71:207–226

    Article  Google Scholar 

  • Borg LE, Edmunson J, Asmerom Y (2005) Constraints on the U-Pb systematics of Mars inferred from a combined U-Pb, Rb-Sr, and Sm-Nd isotopic study of the Martian meteorite Zagami. Geochim Cosmochim Acta 69:5819–5830

    Article  Google Scholar 

  • Borovička J, Spurný P, Brown P, Wiegert P, Kalenda P, Clark D, Shrbený L (2013) The trajectory, structure and origin of the Chelyabinsk asteroidal impactor. Nature 503:235–237

    Article  Google Scholar 

  • Bouvier A, Wadhwa M, Janney P (2008) Pb-Pb isotope systematics in an Allende chondrule. Geochim Cosmochim Acta 72:A106

    Google Scholar 

  • Bowring SA, Williams IS (1999) Priscoan (4.00–4.03 Ga) orthogneises from northwestern Canada. Contrib Mineral Petrol 134:3–16

    Article  Google Scholar 

  • Braukmüller N, Wombacher F, Hezel DC, Escoube R, Münker C (2018) The chemical composition of carbonaceous chondrites: implications for volatile element depletion, complementarity and alteration. Geochim Cosmochim Acta 239:17–48

    Article  Google Scholar 

  • Buchner E, Seyfried H, van den Bogaard P (2003) 40Ar/39Ar laser probe age determination confirms the Ries impact crater as the source of glass particles in Graupensand sediments (Grimmelfinger Formation, North Alpine Foreland Basin). Geol Rundschau/Int J Earth Sci 92:1–6

    Article  Google Scholar 

  • Buchwald VF (1975) Handbook of Iron meteorites. Their history, distribution, composition and structure. University of California Press, Berkeley

    Google Scholar 

  • Chabot NW, Haack H (2006) Evolution of asteroidal cores. In: Lauretta DS, McSween HY (Hrsg) Meteorites and the early solar system. Universiy Arizona Press, Tucson, S 675–683

    Google Scholar 

  • Cheng M, El Goresy A, Gillet P (2004) Ringwoodite lamellae in olivine: clues to olivine-ringwoodite phase transition mechanisms in shocked meteorites and subducted slabs. Proc Nat Acad Sci USA 101:15033–15037

    Article  Google Scholar 

  • Consolmagno GJ, Britt DT, Macke RJ (2008) The significance of meteorite density and porosity. Chem Erde/Geochem 68:1–29

    Google Scholar 

  • Deutsch A, Masaitis VL, Langenhorst F, Grieve RAF (2000) Popigai, Siberia − well preserved giant impact structure, natural treasury and world’s geological heritage. Episodes 23:3–12

    Article  Google Scholar 

  • El Goresy A, Dera P, Sharp TG, Prewitt CT, Chen M, Dubrovinsky L, Wopenka B, Boctor C, Hemley RJ (2008) Seifertite, a dense orthorhombic polymorph of silica from the Martian meteorites Shergotty and Zagami. Eur J Mineral 20:523–528

    Article  Google Scholar 

  • Erickson TM, Kirkland CL, Timms NE et al (2020) Precise radiometric age establishes Yarrabububba, Western Australia, as Erath’s oldest recognised meteorite impact structure. Nature Comm 11:300

    Article  Google Scholar 

  • Fagan TJ, Krot AN, Keil K, Yurimoto H (2004) Oxygen isotopic evolution of amoeboid olivine aggregates in the reduced CV chondrites Efremovla, Vigarano and Leoville. Geochim Cosmochim Acta 68:2591–2611

    Article  Google Scholar 

  • Gentner W, Lippolt HJ, Schaefer OA (1961) Das Kalium-Argon-Alter der Gläser des Nördlinger Rieses und der böhmisch-mährischen Tektite. Geochim Cosmochim Acta 27:191–200

    Article  Google Scholar 

  • Gilmor I (2005) Structural and isotopic analysis of organic matter in carbonaceous chondrites. In: Davis AM (Hrsg) Meteorites, comets, and planets. Elsevier, Oxford, S 269–290

    Google Scholar 

  • Glass BP, Simonson BM (2012) Distal impact ejecta layers: spherules and more. Elements 8:43–48

    Article  Google Scholar 

  • Goldstein JI, Axon HJ (1973) The Widmannstätten figure in iron meteorites. Naturwissenschaften 60:313–321

    Article  Google Scholar 

  • Goldstein JI, Scott ERD, Chabot NL (2009) Iron meteorites: crystallization, thermal history, parent bodies, and origin. Chem Erde 69:293–325

    Article  Google Scholar 

  • Gooding JL, Keil K (1981) Relative abundances of chondrule primary textural types and their bearing on conditions of chondrule formation. Meteoritics 16:17–43

    Article  Google Scholar 

  • Goodrich C, Bischoff A, O’Brien DP (2014) Asteroid 2008 TC3 and the fall of Almahata Sitta, a unique meteorite breccia. Elements 10:31–37

    Article  Google Scholar 

  • Heide F, Wlotzka F (1988) Kleine Meteoritenkunde, 3. Aufl. Springer, Heidelberg

    Book  Google Scholar 

  • Henehan MJ, Ridgwell A, Thomas E, Zhang S, Alegret L, Schmidt DN, Rae JWB, Witts JD, Landman NH, Greene SE, Huber BT, Super JR, Planavsky NJ, Hull PM (2019) Rapid ocean acidification and protracted Earth system recovery followed the end-Cretaceous Chicxulub impact. Proc Natl Acad Sci 116:22500–22504

    Article  Google Scholar 

  • Hildebrandt AR, Penfield GT, Kring DA, Pilkington M, Camargo AZ, Jacobsen AB, Boynton WV (1991) Chicxulub Crater; a possible Cretaceous/Tertiary boundary impact crater in the Yucatán Peninsula, Mexico. Geology 19:867–871

    Article  Google Scholar 

  • Horstmann M, Bischoff A (2014) The Almahatta Sitta polymict breccia and the late accretion of asteroid TC3. Chem Erde/Geochem 74:149–183

    Google Scholar 

  • Hull PM, und 35 Koautoren (2020) On impact and volcanism across the Cretaceous-Paleogene boundary. Science 367:266–272

    Google Scholar 

  • Jagoutz E, Wänke H (1986) Sr and Nd systematics of Shergotty meteorite. Geochim Cosmochim Acta 50:939–953

    Article  Google Scholar 

  • Jourdan F, Reimold WU, Deutsch A (2012) Dating terrestrial impact structures. Elements 8:49–53

    Article  Google Scholar 

  • Keil K (1989) Enstatite chondrites and their parent bodies. Meteoritics 24:195–208

    Article  Google Scholar 

  • Keil K (2010) Enstatite achondrite meteorites (aubrites) and the histories of their asteroidal parent bodies. Chem Erde/Geochem 70:295–317

    Google Scholar 

  • Keil K (2012) Angrites, a small but diverse suite of ancient, silica-undersaturated volcanic-plutonic mafic meteorites, and the history of their parent asteroid. Chem Erde/Geochem 72:191–218

    Google Scholar 

  • Keil K (2014) Brachinite meteorites: partial melt residues from an FeO-rich asteroid. Chem Erde/Geochem 74:311–329

    Google Scholar 

  • Kenkmann T, Artemieva NA, Poelchau MH (2008) The Carancas event of September 15, 2007: Meteorite fall, impact conditions, and crater characteristics. Lunar Planet Sci 39:1094

    Google Scholar 

  • Kleine T, Mezger K, Palme H, Scherer E, Münker C (2005) Early core formation in asteroids and late accretion of chondrite parent bodies: Evidence from 182Hf-182W in CAIs, metal-rich chondrites, and iron meteorites. Geochim Cosmochim Acta 69:5805–5818

    Article  Google Scholar 

  • Kleine T, Rudge JF (2011) Chronometry of meteorites and the formation of Earth and Moon. Elements 7:41–46

    Article  Google Scholar 

  • Kleinschrot D (2003) Meteorite – Steine, die vom Himmel fallen. Beringeria, Sonderheft 4:1–89

    Google Scholar 

  • Koeberl C, Claeys P, Hecht L, McDonald I (2012) Geochemistry of impactites. Elements 8:37–42

    Article  Google Scholar 

  • Krot AN, Keil K, Goodrich CA, Scott ERD, Weisberg MK (2005a) Classification of meteorites. In: Davis AM (Hrsg) Meteorites, comets, and planets. Treatise in geochemistry, Bd 1. Elsevier, Oxford, S 83–128

    Google Scholar 

  • Krot AN, Petaev MI, Keil K (2005b) Mineralogy and petrology of Al-rich objects and amoeboid olivine aggregates in the CH carbonaceous chondrite North West Africa 739. Chem Erde/Geochim 66:57–76

    Google Scholar 

  • Krot AN, Ivanova MA, Ulyanov AA (2007) Chondrules in the CB/CH-like carbonaceous chondrite Isheyevo: evidence for various chondrule-forming mechanisms and multiple chondrule generations. Chem Erde/Geochem 67:283–300

    Google Scholar 

  • Krot AN, Keil K, Scott ERD, Goodrich CA, Weisberg MK (2014) Classification of meteorites and their genetic relationships. In: Davis AM, Holland HD, Turekian KK (Hrsg) Meteorites and cosmochemical processes: Treatise on Geochemistry, Bd 1, 2. Aufl. Elsevier, Amsterdam, S 1–63

    Google Scholar 

  • Lapen TJ, Righter M, Brandon AD, Debaille V, Beard BL, Shafer JT, Peslier AH (2010) A younger age for ALH 84001 and its chemical link to shergottite sources in Mars. Science 328:347–351

    Article  Google Scholar 

  • Laurenci A, Bigazzi G, Balestrieri ML, Bouška W (2003) 40Ar/39Ar laser probe dating of the Central European tektite-producing impact event. Meteoritics 38:887–893

    Article  Google Scholar 

  • MacPershon GJ (2005) Calcium–aluminum-rich inclusions in chondritic meteorites. In: Davis AM (Hrsg) Meteorites, comets, and planets. Treatise in geochemistry, Bd 1. Elsevier, Oxford, S 201–246

    Google Scholar 

  • MacPershon GJ, Andronicos CL, Bindi L et al (2013) A new CV3 find from the Koryak Mountains, Eastern Russia. Meteoritics 48:1499–1514

    Article  Google Scholar 

  • Martins Z (2011) Organic chemistry of carbonaceous meteorites. Elements 7:35–40

    Article  Google Scholar 

  • McCoy TJ (2010) Mineralogical evolution of meteorites. Elements 6:19–23

    Article  Google Scholar 

  • Metzler K, Bischoff A, Stöffler D (1992) Accretionary dust mantles in CM chondrites: evidence for solar nebula processes. Geochim Cosmochim Acta 56:2873–2897

    Article  Google Scholar 

  • Misawa K, Yamagichi A, Kaiden H (2005) U-Pb and 207Pb-206Pb-ages of zircons from basaltic eucrites: implications for early basaltic volcanism on the eucrite parent body. Geochim Cosmochim Acta 69:5847–5861

    Article  Google Scholar 

  • Mittlefehldt DW, Prettyman TH, Goodrich CA, Kracher A (1998) Non-chondritic meteorites from asteroidal bodies. Rev Mineral 36:4.01-4.195

    Google Scholar 

  • Morlok A, Bischoff A, Patzek M, Sohn M, Hiesinger H (2017) Chelyabinsk − a rock with many different (stony) faces: an infrared study. Icarus 284:431–442

    Article  Google Scholar 

  • Norton OR (2002) The Cambridge encyclopedia of meteorites. Cambridge University Press, Cambridge

    Google Scholar 

  • Oberst J, Heinlein D, Köhler U, Spurný P (2004) The multiple meteorite fall of Neuschwanstein: circumstances of the event and meteorite search campaigns. Meteoritics 39:1605–1626

    Google Scholar 

  • Papike JJ, Ryder G, Shearer CK (1998) Lunar samples. Rev Mineral 36:51–523

    Google Scholar 

  • Pearce BKD, Pudritz RE (2015) Seeding the pregenetic Earth: Meteoritic abundances. Astrophys J 807: 85 ff

    Google Scholar 

  • Phillips FM, Zreda MG, Smith SS, Elmore D, Kubik PW, Dorn RI, Roddy DJ (1991) Age and geomorphic history of meteor crater, Arizona, from cosmogenic 36Cl and 14C in rock varnish. Geochim Cosmochim Acta 55:2695–2698

    Article  Google Scholar 

  • Pierazzo E, Artemieva N (2012) Local and global environmental effects of impacts on Earth. Elements 8:55–60

    Article  Google Scholar 

  • Pieters CM, Klima RL, Hiroi T, Dyar MD, Lane MD, Treiman AH, Noble SK, Sunshine JM, Bishop JL (2008) Martian dunite NWA 2737: integrated spectroscopic analyses of brown olivine. J Geophy Res 113:E06004

    Google Scholar 

  • Popova PP and the Chelyabinsk Airbust Consortium (2013) Chelyabinsk air-bust, damage assessment, meteorite recovery, and caracterization. Science 342:1069–1073

    Article  Google Scholar 

  • Righter K, Abell P, Agresti D, Berger EL, Burton AS, Delaney JS, Fries MO, Gibson EK, Haba MK, Harrinton R, Herzog G, Keller LP, Locke D, Lindsey FN, McCoy TJ, Morris RV, Nagao K, Nakamura-Messenger K, Niles PB, Nyquist LE, Park J, Peng ZK, Shih C-Y, Simon JI, Swisher CC, Tappa MJ, Turrin BD, Zeigler RA (2015) Mineralogy, petrology, chronology, and exposure history of the Chelyabinsk meteorite and parent body. Meteoritics & Planet Sci 50:1790–1819

    Article  Google Scholar 

  • Ringwood AE (1960) The Novo Urei meteorite. Geochim Cosmochim Acta 20:1–2

    Article  Google Scholar 

  • Roszjar J, Whitehouse MJ, Bischoff A (2014) Meteoritic zircon − occurrence and chemical characteristics. Chem Erde/Geochem 74:453–469

    Google Scholar 

  • Ruzicka A (2014) Silicate-bearing iron meteorites and their implications for the evolution of asteroidal parent bodies. Chem Erde/Geochem 74:3–48

    Google Scholar 

  • Schmieder M, Buchner E, Schwarz WH, Trieloff M, Lambert P (2010) A Rhaetian 40Ar/39Ar age for the Rochechouart impact structure (France) and implication for the latest Triassic sedimentary record. Meteor Planet Sci 45:1225–1242

    Article  Google Scholar 

  • Schultz PH, Harris RS, Tancredi G, Ishitsuka J (2008) Implications of the Carancas meteorite impact. Lunar Planet Sci 39:2409

    Google Scholar 

  • Schulze H, Bischoff A, Palme H, Spettel B, Dreibus G, Otto J (1994) Mineralogy and chemistry of Rumuruti: the first meteorite fall of the new R chondrite group. Meteoritics 29:275–286

    Article  Google Scholar 

  • Schwarz WH, Trieloff M, Bollinger K, Gantert N, Fernandes VA, Meyer HP, Ovenmire H, Jessberger EK, Guglielmino M, Koeberl K (2016) Coeval ages of Australasian, Central American and Western Canadian tektites reveal multiple impacts 790 ka ago. Geochim Cosmochim Acta 178:307–319

    Article  Google Scholar 

  • Scott ERD, Krot AN (2005) Chondrites and their components. In: Davis AM (Hrsg) Meteorites, comets, and planets. Treatise in geochemistry, Bd 1. Elsevier, Oxford, S 143–200

    Google Scholar 

  • Sieh K, Herrin J, Jicha B, Schonwalder AD, Moore JDP, Banerjee P, Wiwegwin W, Sihavong V, Singer B, Chualaowanich T, Charusiri P (2020) Australasian impact crater buried under the Bolava volcanic field. Proc Nat Acad Sci 117:1346–1353

    Article  Google Scholar 

  • Treiman AH (2005) The nakhlite meteorites: Augite-rich igneous rocks from the Mars. Chem Erde/Geochem 65:203–270

    Google Scholar 

  • Trieloff M, Schmitz B, Korochantseva E (2007) Kosmische Katastrophe im Erdaltertum. Sterne und Weltraum 6:28–35

    Google Scholar 

  • Tschermak G (1883) Beitrag zur Classifikation der Meteoriten. Sitzungsber Akad Wiss Wien 88(1):347–371

    Google Scholar 

  • van Schmus WR, Wood JA (1967) A chemical-petrologic classification for the chondritic meteorites. Geochim Cosmochim Acta 31:747–765

    Article  Google Scholar 

  • von Engelhardt W, Berthold C, Wenzel T, Dehner T (2005) Chemistry, small-scale inhomogeneity, and formation of moldavites as condensates from sands vaporized by the Ries impact. Geochim Cosmochim Acta 69:5611–5626

    Article  Google Scholar 

  • Wänke H, Dreibus G (1988) Chemical composition and accretion history of terrestrial planets. Phil Trans Roy Soc London A325:545–557

    Google Scholar 

  • Warren PH, Taylor JG, Keil K (1983) Regolith breccia Allan Hills A8105: evidence for lunar origin, and petrography of pristine and non-pristine clasts. Geophys Res Lett 10:779–782

    Article  Google Scholar 

  • Wasson JT (1985) Meteorites. Their record of early solar system history. Freeman, New York

    Google Scholar 

  • Welten KC, Meier MMM, Caffee MW, Nishizumi K, Wieler R, Jenniskens P, Shaddad MH (2010) Cosmogenic nuclides in Almahata Sitta ureilites: Cosmic ray exposure age, preatmospheric mass, and bulk density of asteroid 2008 TC3. Meteoritics 45:1728–1742

    Article  Google Scholar 

  • Wood CA, Ashwall LD (1981) SNC meteorites: igneous rocks from Mars? Lunar Planet Sci 12:1359–1375

    Google Scholar 

  • Zanda B (2004) Chondrules. Earth Planet Sci Lett 224:1–17

    Article  Google Scholar 

  • Zipfel J, Bischoff A, Schulz L, Spettel B, Dreibus G, Schönbeck T, Palme H (2010) Mineralogy, chemistry and irradiation record of Neuschwanstein (EL6) chondrite. Meteoritics 45:1488–1501

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Okrusch .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Okrusch, M., Frimmel, H.E. (2022). Meteorite. In: Mineralogie. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-64064-7_31

Download citation

Publish with us

Policies and ethics