Skip to main content

Hydrothermale Mineral-Lagerstätten

  • Chapter
  • First Online:
Mineralogie

Zusammenfassung

Viele Mineral-Lagerstätten bilden sich nicht aus einem Magma, sondern aus hydrothermalen Fluiden, die genetisch mit Magmatismus verknüpft sein können aber nicht müssen. Während man unter dem Begriff „hydrothermal“ lediglich „heißer als die Umgebung“ versteht, ist der Begriff „Fluid“ für die meisten Erdwissenschaftler relativ unscharf definiert und beschreibt sowohl überkritische als auch unterkritische Lösungen, je nach Temperatur, Druck und chemischer Zusammensetzung, insbesondere dem Anteil der leichtflüchtigen Komponenten in dem betreffenden System. Hydrothermale Lagerstätten können in unterschiedlichen plattentektonischen Positionen innerhalb der Erdkruste und durch eine Reihe von Prozessen entstehen, von denen die folgenden besonders hervorzuheben sind.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 64.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • Alexandre P, Kyser K, Thomas D, Polito P, Marlat J (2009) Geochronology of unconformity-related uranium deposits in the Athabasca Basin, Saskatchewan, Canada, and their integration in the evolution of the basin. Miner Deposita 44:41–59

    Article  Google Scholar 

  • Barnes HL (1988) Ores and Ore Minerals. Open University Press, McGraw-Hill Education, Maidenhead

    Google Scholar 

  • Barnes HL (Hrsg) (1997) Geochemistry of hydrothermal ore deposits, 3. Aufl. Wiley, New York

    Google Scholar 

  • Barra F, Reich M, Rojas P, Selby D, Simon AC, Salazar E, Palma G (2017) Unraveling the origin of the Andean IOCG Clan: a Re-Os isotope approach. Ore Geol Rev 81:62–78

    Article  Google Scholar 

  • Baumann L, Nikolsky IL, Wolf M (1979) Einführung in die Geologie und Erkundung von Lagerstätten. Verlag Glückauf, Essen

    Google Scholar 

  • Beck R (1903) Lehre von den Erzlagerstätten. Borntraeger, Berlin

    Google Scholar 

  • Bergemann C, Gnos E, Berger A, Whitehouse M, Mullis J, Wehrens P, Pettke T, Janots E (2017) Th-Pb ion probe dating of zoned hydrothermal monazite and its implications for repeated shear zone activity: an example from the Central Alps, Switzerland. Tectonics 36:671–689

    Article  Google Scholar 

  • Bierlein F, Groves DI, Goldfarb RJ, Dubé B (2006) Lithosperic controls on the formation of provinces hosting giant orogenic gold deposits. Miner Deposita 40:874–886

    Article  Google Scholar 

  • Breeding CM, Ague JJ (2002) Slab-derived fluids and quartz-vein formation in an accretionary prism. Otago Schist, New Zealand: Geology 30:499–502

    Google Scholar 

  • Brown KL, Simmons SF (2003) Precious metals in high-temperature geothermal systems in New Zealand. Geothermics 23:619–625

    Article  Google Scholar 

  • Chen YJ, Piraino F, Wu G, Qi JP, Xiong XL (2012) Epithermal deposits in North Xinjiang, NW China. Intern J Earth Sci 101:889–917

    Article  Google Scholar 

  • Chetty D, Frimmel HE (2000) The role of evaporites in the genesis of base metal sulphide mineralisation in the Northern Platform of the Pan-African Damara Belt, Namibia: geochemical and fluid inclusion evidence from carbonate wall rock alteration. Miner Deposita 35:364–376

    Article  Google Scholar 

  • Cline JS, Hofstra A, Muntean JL, Tosdal RM, Hickey KA (2005) Carlin-type gold deposits in Nevada: critical geologic characteristics and viable models. In: Hedenquist JW, Thompson JFH, Goldfarb RJ, Richards JP (Hrsg) Economic geology one hundreth anniversary volume. Society of Economic Geologists, Littleton, S 451–484

    Google Scholar 

  • Corliss JG, Dymond J, Gordon LI, Edmont JM, von Herzen RP, Ballard RD, Green K, Williams D, Bainbridge A, Crane K, van Andel TH (1979) Submarine thermal springs on the Galapagos rift. Science 203:1073–1083

    Article  Google Scholar 

  • Cox SF (2005) Coupling between deformation, fluid pressures, and fluid flow in ore-producing hydrothermal systems at depth in the crust. In: Hedenquist JW, Thompson JFH, Goldfarb RJ, Richards JP (Hrsg) Economic geology one hundreth anniversary volume. Society of Economic Geologists, Littleton, S 39–75

    Google Scholar 

  • Dahlkamp FJ (1993) Uranium ore deposits. Springer, Berlin

    Book  Google Scholar 

  • Derome D, Cathelineau M, Cuney M, Fabre C, Lhomme T, Banks DA (2005) Mixing of sodic and calcic brines and uranium deposition at McArthur River, Saskatchewan, Canada: a Raman and laser-induced breakdown spectroscopic study of fluid inclusions. Econ Geol 100:1529–1545

    Article  Google Scholar 

  • de Ronde CEW, Massoth GJ, Butterfield DA, Christensen BW, Ishibashi J, Ditchburn G, Hannington MG, Brathwaite RL, Lupton JE, Kamenetsky VS, Graham IG, Zellmer GF, Dziak RP, Embley RW, Dekov VM, Munnik F, Lahr J, Evans LJ, Takai K (2011) Submarine hydrothermal activity and gold-rich mineralization at Brothers Volcano, Kermadec Arc, New Zealand. Mineral Dep 46:541–584

    Article  Google Scholar 

  • Ehrig K, McPhie J, Kamenetsky V (2013) Geology and mineralogical zonation of the Olympic Dam iron oxide Cu-U-Au-Ag deposit, South Australia. Soc Econ Geol Spec Publ 16:237–268

    Google Scholar 

  • Evans AM (1993) Ore geology and industrial minerals, 3. Aufl. Blackwell Science, Oxford

    Google Scholar 

  • Fontboté L, Kouzmanov K, Chiaradia M, Pokrovski GS (2017) Sulfide minerals in hydrothermal deposits. Elements 13:97–103

    Article  Google Scholar 

  • Franklin JM, Gibson HL, Jonasson IR, Galley AG (2005) Volcanogenic massive sulfide deposits. In: Hedenquist JW, Thompson JFH, Goldfarb RJ, Richards JP (Hrsg) Economic geology one hundreth anniversary volume. Society of Economic Geologists, Littleton, S 523–560

    Google Scholar 

  • Frenzel M, Ketris MP, Gutzmer J (2014) On the geological availability of germanium. Miner Deposita 49:471–486

    Article  Google Scholar 

  • Frimmel HE (1991) Isotopic constraints on fluid/rock ratios in carbonate rocks: barite-sulfide mineralization in the Schwaz Dolomite, Tyrol (Eastern Alps, Austria). Chem Geol 90:195–209

    Article  Google Scholar 

  • Frimmel HE (2008) Earth’s continental gold endowment. Earth Planet Sci Lett 267:45–55

    Article  Google Scholar 

  • Frimmel HE (2018) Episodic concentration of gold to ore grade through Earth’s history. Earth-Sci Rev 180:148–158

    Article  Google Scholar 

  • Frimmel HE, Müller J (2011) Estimates of mineral resource availability – how reliable are they? Akad Geowiss Geotechnol, Veröffentl 28:39–62, Stuttgart

    Google Scholar 

  • Frimmel HE, Deane JG, Chadwick, PJ (1996) Pan-African tectonism and the genesis of base metal sulfide deposits in the northern foreland of the Damara Orogen, Namibia. In: Sangster DF (Hrsg) Carbonate-hosted lead-zinc deposits. Society of economic geologists, Spec Publ No. 4, Littleton, Colorado, S 204–217

    Google Scholar 

  • Frimmel HE, Jonasson I, Mubita P (2004) An Eburnean base metal source for sediment-hosted zinc-lead deposits in Neoproterozoic units of Namibia: lead isotopic and geochemical evidence. Miner Deposita 39:328–343

    Article  Google Scholar 

  • Frimmel HE, Schedel S, Brätz H (2014) Uraninite chemistry as forensic tool for provenance analysis. Applied Geochem 48:104–121

    Article  Google Scholar 

  • Garwin S, Hall R, Watanabe Y (2005) Tectonic setting, geology, and gold and copper mineralization in Cenozoic magmatic arcs of Southeast Asia and the West Pacific. In: Hedenquist JW, Thompson JFH, Goldfarb RJ, Richards JP (Hrsg) Economic geology one hundreth anniversary volume. Society of Economic Geologists, Littleton, S 891–930

    Google Scholar 

  • Goldfarb RJ, Groves DI (2015) Orogenic gold: common or evolving fluids and metal sources through time. Lithos 233:2–26

    Article  Google Scholar 

  • Goldfarb RJ, Baker T, Dubé B, Groves DI, Hart CJR, Gosselin P (2005) Distribution, character, and genesis of gold deposits in metamorphic terranes. In: Hedenquist JW, Thompson JFH, Goldfarb RJ, Richards JP (Hrsg) Economic geology one hundreth anniversary volume. Society of Economic Geologists, Littleton, S 407–450

    Google Scholar 

  • Goodfellow WD, Franklin JM (1993) Geology, mineralogy and geochemistry of massive sulfides in shallow cores, Middle Valley, Northern Juan de Fuca Ridge. Econ Geol 88:2037–2064

    Article  Google Scholar 

  • Gopon P, Douglas JO, Auger MA, Hansen L, Wade J, Cline JS, Robb LJ, Moody MP (2019) A nanoscale investigation of Carlin-type gold deposits: an atom-scale elemental and isotopic perspective. Econ Geol 114:1123–1133

    Article  Google Scholar 

  • Graupner T, Niedermann S, Kempe U, Klemd R, Bechtel A (2006) Origin of ore fluids in the Muruntau gold system: constraints from noble gas, carbon isotope and halogen data. Geochim CosmochimActa 70:5356–5370

    Article  Google Scholar 

  • Groves DI, Goldfarb RJ, Gebre-Mariam M, Hagemann SG, Robert F (1998) Orogenic gold deposits: a proposed classification in the context of their crustal distribution and relationship to other gold deposit types. Ore Geol Rev 13:7–27

    Article  Google Scholar 

  • Guilbert JM, Park CF (1986) The geology of ore deposits, 4. Aufl. Freeman, New York

    Google Scholar 

  • Hannington MD, de Ronde CEJ, Petersen S (2005) Sea-floor tectonics and submarine hydrothermal systems. In: Hedenquist JW, Thompson JFH, Goldfarb RJ, Richards JP (Hrsg) Economic geology one hundreth anniversary volume. Society of Economic Geologists, Littleton, S 111–141

    Google Scholar 

  • Haschke SS, Gutzmer J, Wohlgemuth-Ueberwasser CC, Kraemer D, Burisch M (2021) The Niederschlag fluorite-(barite) deposit, Erzgebirge/Germany – a fluid inclusion and trace element study. Miner. Deposita 56: in press

    Google Scholar 

  • Hedenquist JW, Arribas RA, Gonzalez UE (2000) Exploration for epithermal gold deposits. In: Hagemann S, Brown PE (Hrsg) Gold in 2000. Rev Econ Geol 13:245–277, Soc Econ Geol, Littleton

    Google Scholar 

  • Herrington RJ, Zaykov VV, Maslennikov VV, Brown D, Puchkov VN (2005) Mineral deposits of the Urals and links to geodynamic evolution. In: Hedenquist JW, Thompson JFH, Goldfarb RJ, Richards JP (Hrsg) Economic geology one hundreth anniversary volume. Society of Economic Geologists, Littleton, S 1069–1095

    Google Scholar 

  • Höhn S, Frimmel HE, Debaille V, Price W (2021) Pre-Klondikean oxidation prepared the ground for Broken Hill-type mineralization in South Africa. Terra Nova 33:168–173

    Article  Google Scholar 

  • Jaireth S, McKay A, Lambert I (2008) Association of large sandstone uranium deposits with hydrocarbons. AUSGEO News, Australian Government 89:1–6

    Google Scholar 

  • Kozlik M, Gerdes A, Raith JG (2016) Strontium isotope systematics of scheelite and apatite from the Felbertal tungsten deposit, Austria – results of in-situLA-MC-ICP-MS analysis. Miner Petrol 110:11–27

    Article  Google Scholar 

  • Laurila TE, Hannigton MD, Petersen S, Garbe-Schönberg D (2014) Trace metal distribution in the Atlantis II Deep (Red Sea) sediments. Chem Geol 386:80–100

    Article  Google Scholar 

  • Large RR, Bull SW, McGoldrick PJ, Walters SG (2005) Stratiform and stratabound Zn-Pb-Ag deposits in Proterozoic sedimentary basins, Northern Australia. In: Hedenquist JW, Thompson JFH, Goldfarb RJ, Richards JP (Hrsg) Economic geology one hundreth anniversary volume. Society of Economic Geologists, Littleton, S 931–963

    Google Scholar 

  • Leach DL, Bradley D, Lewchuk MT, Symons DT (2001) Mississippi Valley-type lead-zinc deposits through geological time: Implications from recent age-dating research. Miner Deposita 36:711–740

    Google Scholar 

  • Leach DL, Sangster DF, Kelley KD, Franklin JM, Gibson HL, Jonasson IR, Galley AG (2005) Sediment-hosted lead-zinc deposits: a global perspective. In: Hedenquist JW, Thompson JFH, Goldfarb RJ, Richards JP (Hrsg) Economic geology one hundreth anniversary volume. Society of Economic Geologists, Littleton, S 561–607

    Google Scholar 

  • Lindgren W (1933) Mineral deposits, 2. Aufl. Mc-Graw Hill, New York

    Google Scholar 

  • Lusty PAJ, Murton BJ (2018) Deep-Ocean mineral deposits: metal resources and windows into Earth processes. Elements 14:301–306

    Article  Google Scholar 

  • Marchig V, Erzinger J, Heinze P-M (1986) Sediment in black smoker area of the East Pacific Rise (18.5° S). Earth Planet Sci Lett 79:93–106

    Article  Google Scholar 

  • Markl G, Burisch M, Neumann U (2016) Natural fracking and the genesis of five-element veins. Miner Deposita 51:703–712

    Article  Google Scholar 

  • Megaw PKM, Ruiz J, Titley SR (1988) High-temperature, carbonate-hosted Pb-Zn-Ag(Cu) deposits of northern Mexico. Econ Geol 83:1856–1885

    Article  Google Scholar 

  • Meinert LD, Dipple GM, Nicolescu S (2005) World skarn deposits. In: Hedenquist JW, Thompson JFH, Goldfarb RJ, Richards JP (Hrsg) Economic geology one hundreth anniversary volume. Society of Economic Geologists, Littleton, S 299–336

    Google Scholar 

  • Mercadier J, Cuney M, Cathelineau M, Lacorde J (2011) U redox fronts and kaolinisation in basement-hosted unconformity-related U ores of the Athabasca Basin (Canada): late U remobilisation by meteoric fluids. Mineral Depos 46:105–135

    Article  Google Scholar 

  • Mercier-Langevin P, Hannington MD, Dubé B, Bécu V (2011) The gold content of volcanogenic massive sulfide deposits. Miner Deposita 46:509–539

    Article  Google Scholar 

  • Mlynarczyk MSJ, Sherlock RL, William-Jones AE (2003) San Rafael, Peru, geology and structure of the worlds richest tin lode. Miner Deposita 38:555–567

    Article  Google Scholar 

  • Möller P, Lüders V (Hrsg) (1993) Formation of hydrothermal vein deposits. A case study of the Pb-Zn, barite and fluorite deposits of the Harz Mountains. Monogr Ser Mineral Deposits 30, 291 ff, Borntraeger, Berlin

    Google Scholar 

  • Mueller AG, Muhling JR (2013) Silver-rich telluride mineralization at Mount Charlotte and Au–Ag zonation in the giant Golden Mine deposit, Kalgoorlie, Western Australia. Mineral Deposita 48:295–311

    Article  Google Scholar 

  • Müller D, Groves DL (2000) Potassic igneous rocks and associated gold-copper mineralization, 3. Aufl. Springer, Berlin

    Book  Google Scholar 

  • Munoz M, Premo WR, Courjault-Radé P (2005) Sm-Nd dating of fluorite from the worldclass Montroc fluorite deposit, southern Massif Central, France. Miner Deposita 39:970–975

    Article  Google Scholar 

  • Petersen S, Lehrmann B, Bramley JM (2018) Modern seafloor hydrothermal systems: new perspectives on ancient ore-forming processes. Elements 14:307–312

    Article  Google Scholar 

  • Piercey SJ (2011) The setting, style and role of magmatism in the formation of volcanogenic massive sulfide deposits. Miner Deposita 46:449–471

    Article  Google Scholar 

  • Press F, Siever R (2003) Allgemeine Geologie – Eine Einführung in das System Erde, 3. Aufl. Spektrum, Heidelberg

    Google Scholar 

  • Robert F, Poulsen KH, Cassidy KF, Hodgson CJ (2005) Gold metallogeny of the Superior and Yilgarn cratons. In: Hedenquist JW, Thompson JFH, Goldfarb RJ, Richards JP (Hrsg) Economic geology one hundreth anniversary volume. Society of Economic Geologists, Littleton, S 1001–1033

    Google Scholar 

  • Roedder E (1968) The noncolloidal origin of „colloform“ textures in sphalerite ores. Econ Geol 63:451–471

    Article  Google Scholar 

  • Roedder E, Bodnar RJ (1997) Fluid inclusion studies in hydrothermal ore deposits. In: Barnes HL (Hrsg) Geochemistry of hydrothermal ore deposits, 3. Aufl. Wiley, New York, S 657–698

    Google Scholar 

  • Schneiderhöhn H (1941) Lehrbuch der Erzlagerstättenkunde. Gustav Fischer, Jena

    Google Scholar 

  • Schneiderhöhn H (1962) Erzlagerstätten. Kurzvorlesungen zur Einführung und Wiederholung, 4. Aufl. Gustav Fischer, Stuttgart

    Google Scholar 

  • Schutesky ME, de Oliveira C (2020) From the roots to the roof: an integrated model for the Neoarchean Carajas IOCG system, Brazil. Ore Geol Rev 127:103833

    Article  Google Scholar 

  • Schwenzer SP, Tommaseo CE, Kersten M, Kirnbauer T (2001) Speciation and oxidation kinetics of arsenic in thermal springs of Wiesbaden spa, Germany. Fresenius J Anal Chem 371:927–933

    Article  Google Scholar 

  • Seedorff E, Dilles JH, Proffett JM Jr, Einaudi MT, Zurcher L, Stavast WJA, Johnson DA, Barton MD (2005) Porphyry deposits: characteristics and origin of hypogene features. In: Hedenquist JW, Thompson JFH, Goldfarb RJ, Richards JP (Hrsg) Economic geology one hundreth anniversary volume. Society of Economic Geologists, Littleton, S 251–298

    Google Scholar 

  • Sillitoe RH (2003) Iron oxide-copper-gold deposits: an Andean view. Miner Deposita 38:787–812

    Article  Google Scholar 

  • Sillitoe RH (2010) Porphyry copper systems. Econ Geol 105:3–41

    Article  Google Scholar 

  • Simmons SF, White NC, John DA (2005) Geological characteristics of epithermal precious and base metal deposits. In: Hedenquist JW, Thompson JFH, Goldfarb RJ, Richards JP (Hrsg) Economic geology one hundreth anniversary volume. Society of Economic Geologists, Littleton, S 485–522

    Google Scholar 

  • Stefansson A, Seward TM (2004) Gold (I) complexing in aqueous sulphide solutions to 500 °C at 500 bar. Geochim Cosmochim Acta 68:4121–4143

    Article  Google Scholar 

  • Stoffers P, Hannington M, Wright E, Herzig P, de Ronde C (1999) Elemental mercury at submarine hydrothermal vents in the Bay of Plenty, Taupo volcanic zone, New Zealand. Geology 27:931–934

    Article  Google Scholar 

  • Tivey MK, Delaney JR (1986) Growth of large sulfide structures on the Endeavour Segment of the Juan da Fuca Ridge. Earth Planet Sci Lett 79:303–317

    Article  Google Scholar 

  • Tosdal RM, Dilles JH, Cooke DR (2009) From source to sink: magmatic-hydrothermal porphyry and epithermal deposits. Elements 5:289–295

    Article  Google Scholar 

  • Turner RJW, Ames DE, Franklin JM, Godfellow WD, Leitch CHB, Höy T (1993) Character of active hydrothermal mounds and nearby altered hemipelagic sediments in the hydrothermal areas of Middle Valley, northern Juan de Fuca Ridge: data of shallow cores. Canad Mineral 31:973–995

    Google Scholar 

  • U.S. Geological Survey (2021) Mineral Commodity Summaries 2020, U.S. Geological Survey, S 200, https://doi.org/10.3133/mcs2021

  • Vielreicher NM, Groves DI, McNaughton NJ (2016) The giant Kalgoorlie gold field revisited. Geosci Front 7:359–374

    Article  Google Scholar 

  • Vikentyev IV, Yudovskaya MA, Mokhov AV, Kerzin AL, Tsepin AI (2004) Gold and PGE in massive sulfide ore of the Uzelginsk deposit, southern Urals, Russia. Canad Mineral 42:651–665

    Google Scholar 

  • von Damm KL, Buttermore LG, Oosting SE, Bray AM, Fornary JD, Lilley MD, Shanks WC III (1997) Direct observation of the evolution of a seafloor “black smoker” from vapor to brine. Earth Planet Sci Lett 149:101–111

    Google Scholar 

  • von Sandberger F (1881) 1885 Untersuchungen über Erzgänge, Teil 1 und 2. CW Kreidel, Wiesbaden

    Google Scholar 

  • Wagner T, Kirnbauer T, Boyce AJ, Fallick AE (2005) Barite-pyrite mineralization of the Wiesbaden thermal spring system, Germany: a 500-kyr record of geochemical evolution. Geofluids 5:124–139

    Article  Google Scholar 

  • Weisenberger TB, Rahn M, van der Lelij R, Spikings RA, Bucher K (2012) Timing of low-temperature mineral formation during exhumation and cooling in the Central Alps, Switzerland. Earth Planet Sci Lett 327–328:1–8

    Article  Google Scholar 

  • Williams PJ, Barton MD, Johnson DA, Fonbote L, De Haller A, Mark G, Oliver NHS, Marschik R (2005) Iron oxide – copper gold deposits: geology, space-time distribution, and possible models of origin. In: Hedenquist JW, Thompson JFH, Goldfarb RJ, Richards JP (Hrsg) Economic geology one hundreth anniversary volume. Society of Economic Geologists, Littleton, S 371–405

    Google Scholar 

  • Williams-Jones AE, Bowell RJ, Migdisov AA (2009) Gold in solution. Elements 5:281–287

    Article  Google Scholar 

  • Wu H, Zhang L, Wan B, Chen Z, Xiang P, Pirajno F, Du A, Qu W (2011) Re-Os and 40Ar/39Ar ages of the Jiguanshan porphyry Mo deposit, Xilamulun metallogenic belt, NE China, and constraints on mineralization events. Miner Deposita 46:171–185

    Article  Google Scholar 

  • Xie Z, Xia Y, Cline JS, Koenig A, Wei D, Tan Q, Wang Z (2018) Are there carlin-type gold deposits in China? A comparison of the Guizhou, China, deposits with Nevada, USA, deposits. Rev Econ Geol 20:187–233

    Google Scholar 

  • Yakubchuk AS, Shatov VV, Kirwin D, Edwards A, Tomurtogoo O, Badarch G, Buryak VA (2005) Gold and base metal metallogeny of the Central Asian orogenic supercollage. In: Hedenquist JW, Thompson JFH, Goldfarb RJ, Richards JP (Hrsg) Economic geology one hundreth anniversary volume. Society of Economic Geologists, Littleton, S 1035–1068

    Google Scholar 

  • Yamada R, Yoshida T (2011) Relationships between Kuroko volcanogenic massive sulfide (VMS) deposits, felsic volcanism, and island arc development in the northeast Honshu area, Japan. Miner Deposita 46:431–448

    Article  Google Scholar 

  • Zhao Y, Dong Y, Li D, Bi C (2003) Geology, mineralogy, geochemistry, and zonation of the Bajiazi dolostone-hosted Zn-Pb-Ag skarn deposit, Liaoning Province, China. Ore Geol Rev 23:153–182

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Okrusch .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Okrusch, M., Frimmel, H.E. (2022). Hydrothermale Mineral-Lagerstätten. In: Mineralogie. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-64064-7_23

Download citation

Publish with us

Policies and ethics