Skip to main content

Magma und Lava

  • Chapter
  • First Online:
Mineralogie

Zusammenfassung

Wie wir gesehen haben, werden bei Vulkanausbrüchen glutheiße Gesteinsschmelzen aus dem Erdinnern gefördert, die unter stürmischer Entgasung ausfließen oder explosiv herausgeschleudert werden. Man muss daraus schließen, dass im Erdinnern heiße Schmelzen existieren, in denen leichtflüchtige (volatile) Komponenten gelöst sind. Die meisten Laven, die an die Erdoberfläche gefördert werden, enthalten bereits Kristalle, die in einer Magmakammer oder beim Aufstieg gewachsen sind; sie bilden Einsprenglinge in vulkanischen Gesteinen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 64.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • Barth TFW (1962) Theoretical Petrology, 2. Aufl. Wiley, New York

    Google Scholar 

  • Calas G, Henderson GS, Stebbins JF (2006) Glasses and melts: Linking geochemistry and material science. Elements 2:265–268

    Article  Google Scholar 

  • Carroll MR, Holloway JR (Hrsg) (1994) Volatiles in magmas. Rev Mineral 30

    Google Scholar 

  • Day AL, Shepherd ES (1913) Water and volcanic activity. GSA Bull 24:573–606

    Google Scholar 

  • De Vivo B, Lima A, Webster JD (2005) Volatiles in magmatic-volcanic systems. Elements 1:19–24

    Article  Google Scholar 

  • Dingwell DB (1987) Melt viscosities in the system NaAlSi3O8–H2O–F2O-1. In: Mysen BO (Hrsg) Magmatic processes: Physicochemical principles. The Geochemical Society, Spec Publ 1:423–438

    Google Scholar 

  • Dingwell DB (2006) Transport properties of magmas: Diffusion and rheology. Elements 2:281–286

    Article  Google Scholar 

  • Flint RF, Skinner BJ (1974) Physical geology. J Wiley, New York

    Google Scholar 

  • Goranson RW (1931) The solubility of water in granitic magmas. Am J Sci 222:481–501

    Article  Google Scholar 

  • Henderson GS (2005) The structure of silicate melts: A glass perspective. Canad Mineral 43:1921–1958

    Article  Google Scholar 

  • Henderson GS, Calas G, Stebbins JF (2006) The structure of silicate glasses and melts. Elements 2:269–273

    Article  Google Scholar 

  • Hui H, Zhang Y, Xu Z, Del Gaudio P, Behrens H (2009) Pressure dependence of viscosity of rhyolitic melts. Geochim Cosmochim Acta 73:3680–3693

    Article  Google Scholar 

  • Jaggar TA Jr (1917) Volcanologic investigations at Kilauea. Am J Sci 194:161–220

    Article  Google Scholar 

  • Johnson MC, Anderson AT Jr., Rutherford MJ (1994) Ore-eruptive volatile contents of magmas. In: Caroll MR, Holloway JR (Hrsg) Volatiles in Magmas. Rev Mineral 30:281–330

    Google Scholar 

  • Kushiro I (1976) Changes in the viscosity and structure of melt NaAlSi2O6 composition at high pressures. J Geophys Res 81:6347–6350

    Article  Google Scholar 

  • Lange RA (1994) The effect of H2O, CO2, and F on the density and viscosity of silicate melts. In: Carroll MR, Holloway JR (Hrsg) Volatiles in magmas. Rev Mineral 30:331–369

    Google Scholar 

  • Luth WD, Jahns RH, Tuttle PF (1964) The granite system at pressures of 4 to 10 kilobars. J Geophys Res 69:759–773

    Article  Google Scholar 

  • Mueller RF, Saxena K (1977) Chemical petrology. Springer, Berlin

    Book  Google Scholar 

  • Newman S, Lowenstern JB (2002) VOLATILECALC: A silicate melt-H2O-CO2 solution model written in Visual Basic for Excel*. Computers Geosci 28:597–604

    Article  Google Scholar 

  • Paillat O, Elphick SC, Brown WL (1992) The solubility of water in NaAlSi3O8 melts: A re-examination of Ab–H2O phase relationships and critical behaviour at high pressures. Contrib Mineral Petrol 112:490–500

    Article  Google Scholar 

  • Pinkerton H, James M, Jones A (2002) Surface temperature measurements of active lava flows on Kilauea volcano, Hawai’i. J Volcan Geotherm Res 113:159–176

    Article  Google Scholar 

  • Scarfe CM, Mysen BO, Virgo D (1987) Pressure dependence of the viscosity in silicate melts. In: Mysen BO (Hrsg) Magmatic processes: physicochemical principles. The Geochemical Society Spec Publ 1:59–67

    Google Scholar 

  • Schmincke H-U (2006) Volcanism, 1. Aufl; korr. 2. Nachdruck. Springer, Heidelberg

    Google Scholar 

  • Shepherd ES (1911) Temperature of fluid lava from Halemaumau, July 1911. I Rep Haw Volc Observ Boston, S. 47–51

    Google Scholar 

  • Silver L, Stolper E (1989) Water in albitic glasses. J Petrol 30:667–709

    Article  Google Scholar 

  • Stolper E (1982) Water in silicate glasses: an infrared spectroscopic study. Contrib Mineral Petrol 81:1–17

    Article  Google Scholar 

  • Tuttle OF, Bowen NL (1958) Origin of granite in the light of experimental studies in the system NaAlSi3O8–KalSi3O8–SiO2–H2O. Geol Soc America Mem 74:1–153

    Article  Google Scholar 

  • Yoder HS, Tilley CF (1962) Origin of basaltic magmas: An experimental study of natural and synthetic rock systems. J Petrol 3:342–532

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Okrusch .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Okrusch, M., Frimmel, H.E. (2022). Magma und Lava. In: Mineralogie. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-64064-7_16

Download citation

Publish with us

Policies and ethics