Skip to main content

Introduction

  • Chapter
  • First Online:
Supergravity

Part of the book series: Lecture Notes in Physics ((LNP,volume 991))

  • 1112 Accesses

Abstract

The quest for a fundamental theory of all elementary particles and their interactions has been one of the most fascinating scientific endeavors during the past century. One of the main guiding principles in the construction of the ever more refined theories of high energy physics has been the systematic use of symmetry principles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Gauged supergravity refers to supergravity theories that contain also non-trivial conventional gauge interactions, as we will see in Chap. 9.

  2. 2.

    Throughout the book, it is understood that c = 1 and ħ = 1.

  3. 3.

    The full isometry group O(1,  3) of 4D Minkowski spacetime decomposes into four disconnected components. In this book, we mean by Lorentz group only the component, SO(1, 3)0, of Lorentz transformations that are continuously connected to the identity element. This subgroup is often called the “proper orthochronous Lorentz group”.

  4. 4.

    As we will discuss later, an exception to this gauge invariance of the gravitino arises in the presence of Fayet–Iliopoulos terms in \(\mathcal {N}=1\) supergravity. These terms require a gauging of the R-symmetry group, under which also the gravitino is charged, but these theories are often anomalous.

  5. 5.

    Note that the Weyl representation is irreducible as a representation of the Clifford algebra (1.12). It is only the induced representation Σ ab of the Lorentz algebra that is reducible.

  6. 6.

    The Dirac representation corresponds to \(\gamma _{0}=i\sigma _{3}\otimes {\mathbb 1}_{2}\equiv \left ( \begin {array}{cc} i{\mathbb 1}_{2} & 0 \\ 0 & -i{\mathbb 1}_{2} \end {array} \right ) , \gamma _{i}=\sigma _{2}\otimes \sigma _{i}\), and the Majorana representation is given by γ 0 =  2 ⊗ σ 3, \(\gamma _{1}= -\sigma _{1}\otimes {\mathbb 1}_{2}\), γ 2 = σ 2 ⊗ σ 2, \(\gamma _{3}=\sigma _{3}\otimes {\mathbb 1}_{2}\), but they are not really needed for this book.

  7. 7.

    Note that imposing a Weyl or Majorana condition in 4D does not necessitate the use of the Weyl or the Majorana representation of the gamma matrices. The Weyl condition just takes on a particularly simple form in the Weyl representation, and the Majorana condition leads to a particularly simple result in the Majorana representation. We usually do not make use of these simplified forms and write down the conditions in a covariant way.

References

  1. B. de Wit, H. Nicolai, N = 8 Supergravity. Nucl. Phys. B208, 323 (1982)

    Article  ADS  Google Scholar 

  2. M.H. Goroff, A. Sagnotti, The ultraviolet behavior of Einstein gravity. Nucl. Phys. B266, 709 (1986)

    Article  ADS  Google Scholar 

  3. A.E.M. van de Ven, Two loop quantum gravity. Nucl. Phys. B378, 309–366 (1992)

    ADS  MathSciNet  Google Scholar 

  4. Z. Bern, L.J. Dixon, R. Roiban, Is N = 8 supergravity ultraviolet finite?. Phys. Lett. B644, 265–271 (2007) [hep-th/0611086]

    Article  ADS  MathSciNet  Google Scholar 

  5. J. Carrasco, Generic Multiloop Methods for Gauge and Gravity Scattering Amplitudes, a Guided Tour with Pedagogic Aspiration (Strings, Munich, 2012). http://wwwth.mpp.mpg.de/members/strings/strings2012/strings_files/program/Talks/Tuesday/Carrasco.pdf

  6. J.M. Maldacena, The large N limit of superconformal field theories and supergravity. Int. J. Theor. Phys. 38, 1113–1133 (1999) [arXiv:hep-th/9711200 [hep-th]]

    Google Scholar 

  7. E. Witten, Anti-de Sitter space and holography. Adv. Theor. Math. Phys. 2, 253–291 (1998) [arXiv:hep-th/9802150 [hep-th]]

    Google Scholar 

  8. D.Z. Freedman, C. Nunez, M. Schnabl, K. Skenderis, Fake supergravity and domain wall stability. Phys. Rev. D69, 104027 (2004) [hep-th/0312055]

    ADS  MathSciNet  MATH  Google Scholar 

  9. A. Celi, A. Ceresole, G. Dall’Agata, A. Van Proeyen, M. Zagermann, On the fakeness of fake supergravity. Phys. Rev. D71, 045009 (2005) [hep-th/0410126]

    ADS  MathSciNet  Google Scholar 

  10. K. Skenderis, P.K. Townsend, Gravitational stability and renormalization group flow. Phys. Lett. B 468, 46 (1999) [hep-th/9909070]

    Article  ADS  MathSciNet  Google Scholar 

  11. K. Skenderis, P. Townsend, Pseudo-supersymmetry and the domain-wall/cosmology correspondence. J. Phys. A A40, 6733–6742 (2007) [hep-th/0610253]

    Article  ADS  MathSciNet  Google Scholar 

  12. P. Van Nieuwenhuizen, Supergravity. Phys. Rept. 68, 189–398 (1981)

    Article  ADS  Google Scholar 

  13. H.P. Nilles, Supersymmetry, supergravity and particle physics. Phys. Rept. 110, 1 (1984)

    Article  ADS  Google Scholar 

  14. B. de Wit, D.Z. Freedman, Supergravity: the basics and beyond. Bonn Superym. ASI 0135 (1984). MIT-CTP-1238

    Google Scholar 

  15. L. Castellani, R. D’Auria, P. Fre, Supergravity and Superstrings: A Geometric Perspective, vol. 1. Mathematical Foundations (World Scientific, Singapore, 1991), pp. 1–603

    Google Scholar 

  16. L. Castellani, R. D’Auria, P. Fre, Supergravity and Superstrings: A Geometric Perspective, vol. 2. Supergravity (World Scientific, Singapore, 1991), pp. 607–1371

    Google Scholar 

  17. J. Wess, J. Bagger, Supersymmetry and Supergravity (Princeton University Press, Princeton, 1992)

    MATH  Google Scholar 

  18. A. Van Proeyen, Tools for supersymmetry. hep-th/9910030

    Google Scholar 

  19. J.-P. Derendinger, Introduction to Supergravity. Lectures at the Summer School “Gif 2000” in Paris

    Google Scholar 

  20. B. de Wit, Supergravity. hep-th/0212245

    Google Scholar 

  21. A. Van Proeyen, Structure of supergravity theories. hep-th/0301005. To be published in the series Publications of the Royal Spanish Mathematical Society

    Google Scholar 

  22. P. van Nieuwenhuizen, Supergravity as a Yang-Mills theory. hep-th/0408137

    Google Scholar 

  23. F. Zwirner, Supersymmetry Breaking in Four and More Dimensions. Lectures at the 2005 Parma School of Theoretical Physics

    Google Scholar 

  24. H. Samtleben, Lectures on gauged supergravity and flux compactifications. Class. Quant. Grav. 25, 214002 (2008) [arXiv:0808.4076]

    Article  ADS  MathSciNet  Google Scholar 

  25. R. Kallosh, L. Kofman, A.D. Linde, A. Van Proeyen, Superconformal symmetry, supergravity and cosmology. Class. Quant. Grav. 17, 4269–4338 (2000) [Erratum: Class. Quant. Grav. 21, 5017 (2004)] [arXiv:hep-th/0006179 [hep-th]]

    Google Scholar 

  26. L. Andrianopoli, M. Bertolini, A. Ceresole, R. D’Auria, S. Ferrara, P. Fre, T. Magri, N = 2 supergravity and N = 2 super Yang-Mills theory on general scalar manifolds: symplectic covariance, gaugings and the momentum map. J. Geom. Phys. 23, 111–189 (1997) [arXiv:hep-th/9605032 [hep-th]]

    Google Scholar 

  27. B. de Wit, H. Samtleben, M. Trigiante, On Lagrangians and gaugings of maximal supergravities. Nucl. Phys. B 655, 93–126 (2003) [arXiv:hep-th/0212239 [hep-th]]

    Google Scholar 

  28. B. de Wit, H. Samtleben, M. Trigiante, The maximal D = 4 supergravities. JHEP 06, 049 (2007) [arXiv:0705.2101 [hep-th]]

    Google Scholar 

  29. S. Weinberg, The Quantum Theory of Fields, vol. 3. Supersymmetry (Cambridge University Press, Cambridge, 2000), 419 p.

    Book  Google Scholar 

  30. D.Z. Freedman, A. Van Proeyen, Supergravity (Cambridge University Press, Cambridge, 2012)

    Book  Google Scholar 

  31. E. Lauria, A. Van Proeyen, \(\mathcal {N}=2\) Supergravity in D = 4,  5,  6 Dimensions. Lect. Notes Phys. 966 (2020) [arXiv:2004.11433 [hep-th]]

    Google Scholar 

  32. P.C. West, Supergravity, brane dynamics and string duality [arXiv:hep-th/9811101 [hep-th]]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dall’Agata, G., Zagermann, M. (2021). Introduction. In: Supergravity. Lecture Notes in Physics, vol 991. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-63980-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-63980-1_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-63978-8

  • Online ISBN: 978-3-662-63980-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics