Skip to main content

Electricity-Based Enabling Technologies

  • Chapter
  • First Online:
Energy Efficiency in Industry
  • 1018 Accesses

Abstract

Electricity-based enabling technologies include transformers, electric lighting, electric drives, and arguably the fluid machinery they power, such as fans and pumps. The technical fundamentals are briefly described in each case in order to create an understanding of the efficiency measures in detail. For each basic technology, the findings are summarized in recommendations. Finally, there is an outlook on electricity-based heat generation, which forms the transition to the following main chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literature

  • Baake E (2006) Principles of heating processes: edition 1, inductive heating. Heat Process 4(1):65–66

    Google Scholar 

  • Baake E (2007) Principles of heating processes: edition 5, conductive heating. Heat Process 5(2):168–169

    MathSciNet  Google Scholar 

  • Baake E (2009) Principles of heating processes: edition 12, infrared heating. Heat Process 7(2):159–160

    Google Scholar 

  • Bührer C, Hagemann H, Kellers J, Ostermeyer B, Witte W (2009) Efficient magnetic billet heating by direct current. Elektro Wärme Int 2

    Google Scholar 

  • Carolus T (2020) Ventilatoren – Aerodynamischer Entwurf, Schallvorhersage, Konstruktion, 4. Auflage. Springer. https://doi.org/10.1007/978-3-658-29258-4

  • CEATI (2008) Fans & blowers energy efficiency reference guide. Centre for Energy Advancement through Technological Innovation, Montreal

    Google Scholar 

  • DENA (2010a) Ratgeber “Pumpen und Pumpensysteme für Industrie und Gewerbe”. Deutsche Energieagentur, Berlin

    Google Scholar 

  • DENA (2010b) Medienkit, Leuchttürme energieeffizienter Pumpensysteme. Deutsche Energieagentur, Berlin

    Google Scholar 

  • DENA (2010c) Ratgeber “Lufttechnik für Industrie und Gewerbe”. Deutsche Energieagentur, Berlin

    Google Scholar 

  • DoE EERE (2003) Improving fan system performance, a sourcebook for industry. U.S. DoE EERE, Washington

    Google Scholar 

  • DoE EERE (2006) Improving pumping system performance, a sourcebook for industry, 2nd edn. U.S. DoE EERE, Washington

    Google Scholar 

  • DoE EERE (2014) Improving motor and drive system performance, a Soureebook for industry. U.S DoE, Advanced Manufacturing Office. https://www.energy.gov/sites/prod/files/2014/04/f15/amo_motors_sourcebook_web.pdf. Last checked 31.03.2021

  • Fischli U, Marthy M, Meiler M, Köhl M, Tuffli A (1993) Elektrizitätsbedarf für Industrielüftungen, Materialien zu RAVEL. Bundesamt für Konjunkturfragen, Bern (CH)

    Google Scholar 

  • Fördergemeinschaft Gutes Licht (2016) licht.wissen 01 – Lighting with Artificial Light, Frankfurt am Main. https://www.licht.de/en/service/publications-and-downloads/lichtwissen-series-of-publications/. Last checked 04.04.2021

  • Frontier (2008) Kosten von Stromversorgungsunterbrechungen. Studie im Auftrag der RWE AG, Frontier Economics Ltd. London, 04.07.2008

    Google Scholar 

  • Gülich JF (2014) Centrifugal pumps, 3rd ed. Springer. https://doi.org/10.1007/978-3-642-40114-5

  • Huber H (2013) Transmission am Beispiel der Luftförderung. Topmotors Workshop Transmission, 25.11.2013

    Google Scholar 

  • IEA (2006) Light’s labour’s lost, policies for energy-efficient lighting. OECD/IEA, Paris

    Google Scholar 

  • Kiank H, Fruth W (2011) Planning guide for power distribution plants. Publicis Publishing, Erlangen

    Google Scholar 

  • Kiel E (2008) Drive solutions – mechatronics for production and logistics. Springer. https://doi.org/10.1007/978-3-540-76705-3

  • Kraume M (2020) Transportvorgänge in der Verfahrenstechnik – Grundlagen und apparative Umsetzung, 3. Auflage, Springer Vieweg. https://doi.org/10.1007/978-3-662-60393-2

  • Liebich K (2014) Energieeffizienzpotenziale in der Stromversorgung von Industriekunden, unpublished project report at DHBW. Karlsruhe, 28.02.2014

    Google Scholar 

  • Lupi S, Forzan M, Aliferov A (2015) Induction and direct resistance heating – theory and numerical modeling. Springer International Publishing. https://doi.org/10.1007/978-3-319-03479-9

  • Müller U (2014) Lüftungsoptimierung Basisschulung, Ulrich Müller GmbH, im Auftrag der EnBW AG, 25.11.2014

    Google Scholar 

  • Müller E, Engelmann J, Löffler T, Strauch J (2009) Energieeffiziente Fabriken planen und betreiben. Springer. https://doi.org/10.1007/978-3-540-89644-9

  • Nacke B, Baake E (2015) Electrothermal processes. In: Pfeifer H Handbook of heat processing: fundamentals, calculations, processes. Essen, Vulkan Verlag, pp. 261–326

    Google Scholar 

  • Nuttall C, Rymill S (2013) Ecodesign of energy related products lot 27 – task 2, final report v2. Ricardo-AEA Ltd.

    Google Scholar 

  • Nuttall C, Harrison B, Moura P, Jehle Ch (2014) Ecodesign of energy related products lot 27 – task 8, final draft report v1. Ricardo-AEA Ltd.

    Google Scholar 

  • O.Ö. Energiesparverband (2010) Innovative und effiziente Beleuchtung, Technologien und Lösungen für Büros und andere Dienstleistungsgebäude, Linz (Neuauflage)

    Google Scholar 

  • Österreichische Energieagentur (2010) Energieeffizienz-Leitfaden für Elektromotoren, Wien

    Google Scholar 

  • Pfleiderer C, Petermann H (2005) Strömungsmaschinen, 7. Auflage. Springer

    Google Scholar 

  • Prietze O (2009) Wie energieeffiziente Beleuchtungssysteme Unternehmen helfen, ihren Energieverbrauch und damit ihre Betriebskosten zu senken. DENA Konferenz “Stromeffizienz 2009”. Berlin

    Google Scholar 

  • Radgen P, Falkner H, Brock J, Cory B, Nurzia F, Palomba C, Lewald A, Widerström G, Qvist B, Wernstedt G (2001) Market study for improving energy efficiency for fans, final report. EU SAVE Programme, project XVII/4.1031/Z/99-313

    Google Scholar 

  • Rudolph M, Wagner U (2008) Energieanwendungstechnik. Springer. https://doi.org/10.1007/978-3-540-79022-8

  • Sawyer RL (2006) Steigerung der Effizienz großer USV-Systeme, Whitepaper Nr. 108, APC

    Google Scholar 

  • Schenke G (2010) Hilfsblätter zu “Energieeffiziente Antriebsplanung”. Fachhochschule Emden, Fachbereich Technik, Abteilung E+I

    Google Scholar 

  • Schild PG, Mysen M (2009) Recommendations on specific fan power and fan system efficiency, TN AIVC 65, IEA annex 5 “air infiltration and ventilation Centre”. SINTEF, Norway

    Google Scholar 

  • SEEDT (2005) Strategies for development and diffusion of energy efficient distribution transformers – analysis of existing situation of energy efficient transformers – technical and non technical solutions. EIE/05/056/SI2.419632

    Google Scholar 

  • StMUG (2010) Untersuchung und Optimierung elektrischer Antriebe, FfE München und Arqum München, im Auftrag des Bayerisches Staatsministerium für Umwelt und Gesundheit

    Google Scholar 

  • VDMA (2011) Specification 24262, Energy-efficient pump systems – Guide for the detection and evaluation of weak points and the correct capture of the energy savings potential

    Google Scholar 

  • Waide P, Brunner CU (2011) Energy-efficiency policy opportunities for electric motor-driven systems. IEA, Wien

    Google Scholar 

  • ZVEI (2013) Beitrag industrieller Blindleistungs-Kompensationsanlagen und -Verbraucher für ein innovatives Blindleistungs-Management in der Stromversorgung Deutschlands. ZVEI Zentralverband Elektrotechnik- und Elektronikindustrie e.V, Frankfurt

    Google Scholar 

  • ZVEI (2015) Energy efficiency with electric drive systems. ZVEI Zentralverband Elektrotechnik- und Elektronikindustrie e.V, Frankfurt

    Google Scholar 

  • ZVEI (n.y.). https://www.licht.de/en/service/publications-and-downloads/lichtwissen-series-of-publications/. Last checked 28.03.2021

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Blesl, M., Kessler, A. (2021). Electricity-Based Enabling Technologies. In: Energy Efficiency in Industry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-63923-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-63923-8_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-63922-1

  • Online ISBN: 978-3-662-63923-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics