Skip to main content

„exercise induced hypoalgesia“ – Integration von sensomotorischer Beanspruchung und Schmerzhemmung

  • Chapter
  • First Online:
Schmerztherapie ohne Medikamente
  • 2041 Accesses

Zusammenfassung

Die „exercise induced hypoalgesia“ (EIH) ist nur wenig aufgeklärt. Physische Belastungen aktivieren die Endocannabinoide. Ihre Wirkungen sind aber nicht die alleinige Ursache, sondern auch die Plastizität der relevanten Gehirnstrukturen. Dem PFC unterliegt die Top-down-Kontrolle sensorischer und affektiver Vorgänge einschließlich der Schmerzen, und das Belohnungssystem ist einbezogen. Mannigfaltige weitere Veränderungen im Nervengewebe finden statt. Der aktive Muskel mit dem Myokin IL-4 ist ein Faktor der peripheren Mechanismen.

Die EIH benötigt Ermüdung. Sie kann ein Parameter des Ausprägungsgrades sein. Es fehlen belegte Empfehlungen in Abhängigkeit von der Pathogenese und dem Alter. Die anti-nozizeptive Reorganisation des Gehirns benötigt sehr viel Zeit. Bei Chronifizierung ist die EIH variabel. Eine Schmerzverstärkung kann auftreten, weil die Belastbarkeit der Schmerzhemmung überschritten wird. Das Training der nicht vordergründig betroffenen Körperregionen sollte ein wichtiges Element sein.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • Ambrose KR, Golightly YM. Physical exercise as non-pharmacological treatment of chronic pain: why and when. Best Pract Res Clin Rheumatol. 2015;29(1):120–30. https://doi.org/10.1016/j.berh.2015.04.022. Epub 2015 May 23.

    Article  PubMed  PubMed Central  Google Scholar 

  • Black J, Chesher GB, Starmer GA, Egger G. The painlessness of the long distance runner. Med J Aust. 1979;1:522–3.

    Article  CAS  Google Scholar 

  • Cohen J. Statistical power analysis for the behavioral sciences. 2. Aufl. Hillsdale, NJ: L. Erlbaum Associates;1988.

    Google Scholar 

  • Crombie KM, Brellenthin AG, Hillard CJ, Koltyn KF. Endocannabinoid and opioid system interactions in exercise-induced hypoalgesia. Pain Med. 2018;19(1):118–23. https://doi.org/10.1093/pm/pnx058.

    Article  PubMed  Google Scholar 

  • De Gregorio D, McLaughlin RJ, Posa L, Ochoa-Sanchez R, Enns J, Lopez-Canul M, Aboud M, Maione S, Comai S, Gobbi G. Cannabidiol modulates serotonergic transmission and reverses both allodynia and anxiety-like behavior in a model of neuropathic pain. Pain. 2019;160(1):136–50. https://doi.org/10.1097/j.pain.0000000000001386.

    Article  CAS  PubMed  Google Scholar 

  • Dietrich A, McDaniel WF. Endocannabinoids and exercise. Br J Sports Med. 2004;38:536–41.

    Article  CAS  Google Scholar 

  • Ellingson LD, Stegner AJ, Schwabacher IJ, Koltyn KF, Cook DB. Exercise strengthens central nervous system modulation of pain in fibromyalgia. Brain Sci. 2016;6:8.

    Article  Google Scholar 

  • Galdino G, Romero T, Silva JF, Aguiar D, Paula AM, Cruz J, Parrella C, Piscitelli F, Duarte I, Di Marzo V, Perez A. Acute resistance exercise induces antinociception by activation of the endocannabinoid system in rats. Anesth Analg. 2014;119(3):702–15. https://doi.org/10.1213/ANE.0000000000000340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guindon J, Hohmann AG. The endocannabinoid system and pain. CNS Neurol Disord Drug Targets. 2009;8:403–21. [PubMed: 19839937].

    Article  CAS  Google Scholar 

  • Jain KK. Current challenges and future prospects in management of neuropathic pain. Expert Rev Neurother. 2008;8:1743–56.

    Article  CAS  Google Scholar 

  • Jesus CHA, Redivo DDB, Gasparin AT, Sotomaior BB, de Carvalho MC, Genaro K, Zuardi AW, Hallak JEC, Crippa JA, Zanoveli JM, da Cunha JM. Cannabidiol attenuates mechanical allodynia in streptozotocin-induced diabetic rats via serotonergic system activation through 5-HT1A receptors. Brain Res. 2019;1715:156–64. https://doi.org/10.1016/j.brainres.2019.03.014. Epub 2019 Mar 18.

    Article  CAS  PubMed  Google Scholar 

  • Kami K, Taguchi S, Tajima F, Senba E. Mechanisms and effects of forced and voluntary exercises on exercise-induced hypoalgesia in neuropathic pain model mice. Pain Res. 2015;30:216–29.

    Article  Google Scholar 

  • Kami K, Taguchi S, Tajima F, Senba E. Histone acetylation in microglia contributes to exercise-induced hypoalgesia in neuropathic pain model mice. J Pain. 2016a;17(5):588–99. https://doi.org/10.1016/j.jpain.2016.01.471. Epub 2016 Feb 1.

    Article  CAS  PubMed  Google Scholar 

  • Kami K, Taguchi Ms S, Tajima F, Senba E. Improvements in impaired GABA and GAD65/67 production in the spinal dorsal horn contribute to exercise-induced hypoalgesia in a mouse model of neuropathic pain. Mol Pain. 2016b;12. https://doi.org/10.1177/1744806916629059. Print 2016.

  • Kami K, Tajima F, Senba E. Exercise-induced hypoalgesia: potential mechanisms in animal models of neuropathic pain. Anat Sci Int. 2017;92(1):79–90. https://doi.org/10.1007/s12565-016-0360-z. Epub 2016 Aug 2.

    Article  CAS  PubMed  Google Scholar 

  • Kami K, Tajima F, Senba E. Activation of mesolimbic reward system via laterodorsal tegmental nucleus and hypothalamus in exercise-induced hypoalgesia. Sci Rep. 2018;8(1):11540.

    Article  Google Scholar 

  • Kami K, Tajima F, Senba E. Plastic changes in amygdala subregions by voluntary running contribute to exercise-induced hypoalgesia in neuropathic pain model mice. Mol Pain. 2020;16. https://doi.org/10.1177/1744806920971377.

  • Koltyn KF. Analgesia following exercise: a review. Sports Med. 2000;29:85–98.

    Article  CAS  Google Scholar 

  • Koltyn KF, Brellenthin AG, Cook DB, Sehgal N, Hillard C. Mechanisms of exercise-induced hypoalgesia. J Pain. 2014;15(12):1294–304. https://doi.org/10.1016/j.jpain.2014.09.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laube, W. Zur Rückführung des vegetativ-chronotropen Tonus, der Erholung im neuromuskulären System und den Wechselbeziehungen zwischen beiden Funktionssystemen nach Auslösung einer identischen anaeroben Stoffwechselsituation durch verschiedene Belastungsarten. Dissertation B (Dr. med. sc.), Humboldt-Universität zu Berlin, Bereich Medizin Charité, Physiologisches Institut. 1990.

    Google Scholar 

  • Laube W. Sensomotorik und Schmerz. Berlin: Springer;2020.

    Book  Google Scholar 

  • Lee M, Manders TR, Eberle SE, Su C, D’amour J, Yang R, Lin HY, Deisseroth K, Froemke RC, Wang J. Activation of corticostriatal circuitry relieves chronic neuropathic pain. J Neurosci. 2015;35(13):5247–59. https://doi.org/10.1523/JNEUROSCI.3494-14.2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Wang Q, Ding J, Wang S, Dong C, Wu Q. Exercise training modulates glutamic acid decarboxylase-65/67 expression through TrkB signaling to ameliorate neuropathic pain in rats with spinal cord injury. Mol Pain. 2020;16. https://doi.org/10.1177/1744806920924511.

  • Naugle KM, Fillingim RB, Riley JL 3rd. A meta-analytic review of the hypoalgesic effects of exercise. J Pain. 2012;13(12):1139–50. https://doi.org/10.1016/j.jpain.2012.09.006. Epub 2012 Nov 8.

    Article  PubMed  PubMed Central  Google Scholar 

  • Naugle KM, Naugle KE, Fillingim RB, Samuels B, Riley JL 3rd. Intensity thresholds for aerobic exercise-induced hypoalgesia. Med Sci Sports Exerc. 2014;46(4):817–25.

    Article  CAS  Google Scholar 

  • Navratilova E, Morimura K, Xie JY, Atcherley CW, Ossipov MH, Porreca F. Positive emotions and brain reward circuits in chronic pain. J Comp Neurol. 2016;524:1646–52.

    Article  Google Scholar 

  • Pedersen BK, Febbraio MA. Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nat Rev Endocrinol. 2012;3:457–65.

    Article  Google Scholar 

  • Raichlen DA, Foster AD, Gerdeman GL, Seillier A, Giuffrida A. Wired to run: exercise-induced endocannabinoid signaling in humans and cursorial mammals with implications for the “runner”s high’. J Exp Biol. 2012;215:1331–6. [PubMed: 22442371].

    Article  CAS  Google Scholar 

  • Raichlen DA, Foster AD, Seillier A, Giuffrida A, Gerdeman GL. Exercise-induced endocannabinoid signaling is modulated by intensity. Eur J Appl Physiol. 2013;13:869–75. [PubMed: 22990628].

    Article  Google Scholar 

  • Shen J, Fox LE, Cheng J. Swim therapy reduces mechanical allodynia and thermal hyperalgesia induced by chronic constriction nerve injury in rats. Pain Med. 2013;14:516–25.

    Article  Google Scholar 

  • Simons LE, Kaczynski KJ, Conroy C, Logan DE. Fear of pain in the context of intensive pain rehabilitation among children and adolescents with neuropathic pain: associations with treatment response. J Pain. 2012;13(12):1151–61. https://doi.org/10.1016/j.jpain.2012.08.007. Epub 2012 Oct 17.

    Article  PubMed  PubMed Central  Google Scholar 

  • Thorén P, Floras JS, Hoffmann P, Seals DR. Endorphins and exercise: physiological mechanisms and clinical implications. Med Sci Sports Exerc. 1990;22(4):417–28.

    PubMed  Google Scholar 

  • Toth C, Brady S, Gagnon F, Wigglesworth K. A randomized, single-blind, controlled, parallel assignment study of exercise versus education as adjuvant in the treatment of peripheral neuropathic pain. Clin J Pain. 2014;30(2):111–8. https://doi.org/10.1097/AJP.0b013e31828ccd0f.

    Article  PubMed  Google Scholar 

  • Tsou K, Brown S, Sañudo-Peña MC, Mackie K, Walker JM. Immunohistochemical distribution of cannabinoid CB1 receptors in the rat central nervous system. Neuroscience. 1998;83:393–411. [PubMed: 9460749].

    Article  CAS  Google Scholar 

  • Vaegter HB, Jones MD. Exercise-induced hypoalgesia after acute and regular exercise: experimental and clinical manifestations and possible mechanisms in individuals with and without pain. Pain Rep. 2020;5(5):e823. https://doi.org/10.1097/PR9.0000000000000823. eCollection Sep–Oct 2020.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wan HY, Weavil JC, Thurston TS, Georgescu VP, Hureau TJ, Bledsoe AD, Buys MJ, Jessop JE, Richardson RS, Amann M. The exercise pressor reflex and chemoreflex interaction: cardiovascular implications for the exercising human. J Physiol. 2020;598(12):2311–21. https://doi.org/10.1113/JP279456. Epub 2020 Apr 27.

    Article  CAS  PubMed  Google Scholar 

  • Wassinger CA, Lumpkins L, Sole G. Lower extremity aerobic exercise as a treatment for shoulder pain. Int J Sports Phys Ther. 2020;15(1):74–80.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Der/die Autor(en), exklusiv lizenziert durch Springer-Verlag GmbH, DE, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Laube, W. (2022). „exercise induced hypoalgesia“ – Integration von sensomotorischer Beanspruchung und Schmerzhemmung. In: Schmerztherapie ohne Medikamente. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-63846-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-63846-0_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-63845-3

  • Online ISBN: 978-3-662-63846-0

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics