Skip to main content

Neuromodulatorische Einflüsse auf das Wohlbefinden: Dopamin und Oxytocin

  • Chapter
  • First Online:
Therapieziel Wohlbefinden

Part of the book series: Psychotherapie: Praxis ((ÜSÜR))

  • 4748 Accesses

Zusammenfassung

Dieses Kapitel behandelt neurochemische Einflüsse auf das Wohlbefinden mit dem Fokus auf die Substanzen Dopamin und Oxytocin. Dopamin als Neurotransmitter und Oxytocin als Neuropeptid werden wichtige modulatorische Einflüsse auf das Erleben positiver Emotionen zugeschrieben. Während Dopamin in erster Linie mit Motivation und Belohnung assoziiert wird, spielt Oxytocin insbesondere eine wichtige Rolle bei der Entstehung von prosozialen Emotionen wie Geborgenheit und interpersoneller Nähe. Schon auf neurophysiologischer Ebene zeigt die Verschränkung beider Systeme mit einer Lokalisation von Dopamin- und Oxytocinrezeptoren in wichtigen Regionen des Belohnungssystems, dass beide Aspekte positiver Emotionalität nicht unabhängig zu betrachten sind. Während Oxytocin über eine Dämpfung von Angst und Stress das Erleben sozialer Nähe und Bindung erlaubt, erhöht Dopamin die Motivation, sich positiven Reizen und Situationen anzunähern.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • Adolphs, R. (2003). Cognitive neuroscience of human social behaviour. Nature Reviews Neuroscience, 4, 165–178.

    Article  CAS  Google Scholar 

  • Alexander, R., Aragon, O. R., Bookwala, J., Cherbuin, N., Gatt, J. M., Kahrilas, I. J., Kastner, N., Lawrence, A., Lowe, L., Morrison, R. G., Mueller, S. C., Nusslock, R., Papadelis, C., Polnaszek, K. L., Helene Richter, S., Silton, R. L., & Styliadis, C. (2021). The neuroscience of positive emotions and affect: Implications for cultivating happiness and wellbeing. Neuroscience and Biobehavioral Reviews, 121, 220–249.

    Article  Google Scholar 

  • Amico, J. A., Seif, S. M., & Robinson, A. G. (1981). Oxytocin in human plasma: Correlation with neurophysin and stimulation with estrogen. The Journal of Clinical Endocrinology and Metabolism, 52, 988–993.

    Article  CAS  Google Scholar 

  • Andari, E., Duhamel, J. R., Zalla, T., Herbrecht, E., Leboyer, M., & Sirigu, A. (2010). Promoting social behavior with oxytocin in high-functioning autism spectrum disorders. Proceedings of the National Academy of Sciences, 107(9), 4389–4394.

    Article  CAS  Google Scholar 

  • Aron, A., Fisher, H., Mashek, D. J., Strong, G., Li, H., & Brown, L. L. (2005). Reward, motivation, and emotion systems associated with early-stage intense romantic love. Journal of Neurophysiology, 94, 327–337.

    Article  Google Scholar 

  • Bartels, A., & Zeki, S. (2004). The neural correlates of maternal and romantic love. NeuroImage, 21, 1155–1166.

    Article  Google Scholar 

  • Bek, M. J., Eisner, G. M., Felder, R. A., & Jose, P. A. (2001). Dopamine receptors in hypertension. Mount Sinai Journal of Medicine, 68, 362–369.

    CAS  Google Scholar 

  • Berridge, K. C., & Robinson, T. E. (2016). Liking, wanting, and the incentive-sensitization theory of addiction American Psychologist, 71, 670–679.

    Google Scholar 

  • Blaicher, W., Gruber, D., Bieglmayer, C., Blaicher, A. M., Knogler, W., & Huber, J. C. (1999). The role of oxytocin in relation to female sexual arousal. Gynecologic and Obstetric Investigation, 47, 125–126.

    Google Scholar 

  • Buijs, R. M., de Vries, G. J., & van Leeuwen, F. W. (1985). The distribution and synaptic release of oxytocin in the central nervous system. In J. A. Amico & A. G. Robinson (Hrsg.), Oxytocin. Clinical and laboratory studies (S. 77–86). Elsevier.

    Google Scholar 

  • Burgdorf, J., & Panksepp, J. (2006). The neurobiology of positive emotions. Neuroscience and Biobehavioral Reviews, 30, 173–187.

    Article  Google Scholar 

  • Buss, D. M. (2000). The evolution of happiness. American Psychologist, 55, 15–23.

    Article  CAS  Google Scholar 

  • Cardoso, C., Kingdon, D., & Ellenbogen, M. A. (2014). A meta-analytic review of the impact of intranasal oxytocin administration on cortisol concentrations during laboratory tasks: Moderation by method and mental health. Psychoneuroendocrinology, 49, 161–170.

    Article  CAS  Google Scholar 

  • Carlsson, A. (1995). The dopamine theory revisited. In S. R. Hirsch & D. R. Weinberger (Hrsg.), Schizophrenia (S. 379–400). Blackwell Sciene.

    Google Scholar 

  • Caspi, A., & Moffitt, T. E. (2006). Gene-environment interactions in psychiatry: Joining forces with neuroscience. Nature Reviews Neuroscience, 7, 583–590.

    Article  CAS  Google Scholar 

  • Champagne, F. A. (2008). Epigenetic mechanisms and the transgenerational effects of maternal care. Frontiers in Neuroendocrinology, 29, 386–397.

    Google Scholar 

  • Chen, F. S., Kumsta, R., von Dawans, B., Monakhov, M., Ebstein, R. P., & Heinrichs, M. (2011). Common oxytocin receptor gene (OXTR) polymorphism and social support interact to reduce stress in humans. Proceedings of the National Academy of Sciences of the United States of America, 108, 19937–19942.

    Article  CAS  Google Scholar 

  • Cuthbert, B. N. (2014). The RDoC framework: Facilitating transition from ICD/DSM to dimensional approaches that integrate neuroscience and psychopathology. World Psychiatry, 13, 28–35.

    Article  Google Scholar 

  • Davidson, R. J., Jackson, D. C., & Kalin, N. H. (2000). Emotion, plasticity, context, and regulation: Perspectives from affective neuroscience. Psychological Bulletin, 126, 890–909.

    Article  Google Scholar 

  • de la Fuente-Fernandez, R., Phillips, A. G., Zamburlini, M., Sossi, V., Calne, D. B., Ruth, T. J., et al. (2002a). Dopamine release in human ventral striatum and expectation of reward. Behavioral Brain Research, 136, 359–363.

    Article  Google Scholar 

  • de la Fuente-Fernandez, R., Schulzer, M., & Stoessl, A. J. (2002b). The placebo effect in neurological disorders. The Lancet Neurology, 1, 85–91.

    Article  Google Scholar 

  • Declerck, C. H., Boone, C., Pauwels, L., Vogt, B., & Fehr, E. (2020). A registered replication study on oxytocin and trust. Nature Human Behavior, 4, 646–655.

    Article  Google Scholar 

  • Depue, R. A., & Collins, P. F. (1999). Neurobiology of the structure of personality: Dopamine, facilitation of incentive motivation, and extraversion. Behavioral and Brain Sciences, 22, 491–517.

    Article  CAS  Google Scholar 

  • Di Ciano, P., Coury, A., Depoortere, R. Y., Egilmez, Y., Lane, J. D., Emmett-Oglesby, M. W., et al. (1995). Comparison of changes in extracellular dopamine concentrations in the nucleus accumbens during intravenous self-administration of cocaine or d-amphetamine. Behavioural Pharmacology, 6, 311–322.

    Article  Google Scholar 

  • Diener, E., & Fujita, F. (1995). Resources, personal strivings, and subjective well-being: A nomothetic and idiographic approach. Journal of Personality and Social Psychology, 68, 926–935.

    Article  CAS  Google Scholar 

  • Ditzen, B., Schaer, M., Gabriel, B., Bodenmann, G., Ehlert, U., & Heinrichs, M. (2009). Intranasal oxytocin increases positive communication and reduces cortisol levels during couple conflict. Biological Psychiatry, 65, 728–731.

    Article  CAS  Google Scholar 

  • Drevets, W. C., Gautier, C., Price, J. C., Kupfer, D. J., Kinahan, P. E., Grace, A. A., et al. (2001). Amphetamine-induced dopamine release in human ventral striatum correlates with euphoria. Biological Psychiatry, 49, 81–96.

    Google Scholar 

  • Eckstein, M., Becker, B., Scheele, D., Scholz, C., Preckel, K., Schlaepfer, T. E., Grinevich, V., Kendrick, K. M., Maier, W., & Hurlemann, R. (2015). Oxytocin facilitates the extinction of conditioned fear in humans. Biological Psychiatry, 78, 194–202.

    Google Scholar 

  • Eckstein, M., Zietlow, A. L., Gerchen, M. F., Schmitgen, M. M., Ashcroft-Jones, S., Kirsch, P., & Ditzen, B. (2019). The NeMo real-time fMRI neurofeedback study: protocol of a randomised controlled clinical intervention trial in the neural foundations of mother-infant bonding. BMJ Open, 9, e027747.

    Google Scholar 

  • Engel, S., Klusmann, H., Ditzen, B., Knaevelsrud, C., & Schumacher, S. (2019). Menstrual cycle-related fluctuations in oxytocin concentrations: A systematic review and meta-analysis. Frontiers in Neuroendocrinology, 52, 144–155.

    Article  CAS  Google Scholar 

  • Engel, S., van Zuiden, M., Frijling, J. L., Koch, S. B. J., Nawijn, L., Yildiz, R. L. W., Schumacher, S., Knaevelsrud, C., Bosch, J. A., Veltman, D. J., & Olff, M. (2020). Early posttraumatic autonomic and endocrine markers to predict posttraumatic stress symptoms after a preventive intervention with oxytocin. European Journal of Psychotraumatology, 11, 1761622.

    Article  Google Scholar 

  • Ekman, P. (1994). All emotions are basic. In P. Ekman & R. J. Davidson (Hrsg.), The nature of emotion: Fundamental questions (S. 15–19). Oxford University Press.

    Google Scholar 

  • Esch, T., & Stefano, G. B. (2004). The neurobiology of pleasure, reward processes, addiction and their health implications. Neuroendocrinology Letters, 25, 235–251.

    CAS  Google Scholar 

  • Esch, T., & Stefano, G. B. (2005). The neurobiology of love. Neuroendocrinology Letters, 26, 175–192.

    Google Scholar 

  • Field, T., Hernandez-Reif, M., Diego, M., Schanberg, S., & Kuhn, C. (2005). Cortisol decreases and serotonin and dopamine increase following massage therapy. International Journal of Neuroscience, 115, 1397–1413.

    Article  CAS  Google Scholar 

  • Freund-Mercier, M. J., & Stoeckel, M. E. (1995). Somatodendritic autoreceptors on oxytocin neurones. In R. Ivell & J. A. Russell (Hrsg.), Oxytocin. Cellular and molecular approaches in medicine and research (S. 185–194). Plenum.

    Google Scholar 

  • Fries, A. B., Ziegler, T. E., Kurian, J. R., Jacoris, S., & Pollak, S. D. (2005). Early experience in humans is associated with changes in neuropeptides critical for regulating social behavior. Proceedings of the National Academy of Science of the United States of America, 102, 17237–17240.

    Article  CAS  Google Scholar 

  • Green, L., Fein, D., Modahl, C., Feinstein, C., Waterhouse, L., & Morris, M. (2001). Oxytocin and autistic disorder: Alterations in peptide forms. Biological Psychiatry, 50, 609–613.

    Article  CAS  Google Scholar 

  • Grey, J. A. (1995). A model of the limbic system and the basal ganglia: Application to anxiety and schizophrenia. In M. S. Gazzaniga (Hrsg.), The cognitive neurosciences (S. 1165–1176). MIT Press.

    Google Scholar 

  • Guastella, A. J., Gray, K. M., Rinehart, N. J., Alvares, G. A., Tonge, B. J., Hickie, I. B., Keating, C. M., Cacciotti-Saija, C., & Einfeld, S. L. (2015). The effects of a course of intranasal oxytocin on social behaviors in youth diagnosed with autism spectrum disorders: A randomized controlled trial. Journal of Child Psychology and Psychiatry and Allied Disciplines, 56, 444–452.

    Article  Google Scholar 

  • Guastella, A. J., Howard, A. L., Dadds, M. R., Mitchell, P., & Carson, D. S. (2009). A randomized controlled trial of intranasal oxytocin as an adjunct to exposure therapy for social anxiety disorder. Psychoneuroendocrinology, 34, 917–923.

    Article  Google Scholar 

  • Hall, S. S., Lightbody, A. A., McCarthy, B. E., Parker, K. J., & Reiss, A. L. (2012). Effects of intranasal oxytocin on social anxiety in males with fragile X syndrome. Psychoneuroendocrinology, 37, 509–518.

    Article  CAS  Google Scholar 

  • Heath, R. G. (1963). Electrical self-stimulation of the brain in man. American Journal of Psychiatry, 120, 571–577.

    Article  CAS  Google Scholar 

  • Heath, R. G. (1972). Pleasure and brain activity in man. Deep and surface electroencephalograms during orgasm. Journal of Nervous and Mental Disease, 154, 3–18.

    Article  CAS  Google Scholar 

  • Heimer, L., & Van Hoesen, G. W. (2006). The limbic lobe and its output channels: Implications for emotional functions and adaptive behavior. Neuroscience and Biobehavioral Reviews, 30, 126–147.

    Article  Google Scholar 

  • Heinrichs, M., Meinlschmidt, G., Neumann, I., Wagner, S., Kirschbaum, C., Ehlert, U., et al. (2001). Effects of suckling on hypothalamic-pituitary-adrenal axis responses to psychosocial stress in postpartum lactating women. Journal of Clinical Endocrinology and Metabolism, 86, 4798–4804.

    Article  CAS  Google Scholar 

  • Heinrichs, M., Baumgartner, T., Kirschbaum, C., & Ehlert, U. (2003). Social support and oxytocin interact to suppress cortisol and subjective responses to psychosocial stress. Biological Psychiatry, 54, 1389–1398.

    Article  CAS  Google Scholar 

  • Heinrichs, M., Soravia, L. M., Neumann, I. D., Stangier, U., de Quervain, D. J.-F., & Ehlert, U. (2006). Effects of oxytocin on social phobia. Paper presented at the Annual Meeting of the American College of Neuropsychopharmacology (ACNP), Hollywood, Florida, 3–7. Dezember.

    Google Scholar 

  • Huber, D., Veinante, P., & Stoop, R. (2005). Vasopressin and oxytocin excite distinct neuronal populations in the central amygdala. Science, 308, 245–248.

    Article  CAS  Google Scholar 

  • Insel, T. R. (1997). A neurobiological basis of social attachment. American Journal of Psychiatry, 154, 726–735.

    Article  CAS  Google Scholar 

  • Insel, T. R., & Hulihan, T. J. (1995). A gender-specific mechanism for pair bonding: Oxytocin and partner preference formation in monogamous voles. Behavioral Neuroscience, 109, 782–789.

    Article  CAS  Google Scholar 

  • Insel, T. R., & Shapiro, L. E. (1992). Oxytocin receptor distribution reflects social organization in monogamous and polygamous voles. Proceedings of the National Accademy of Science of the United States of America, 89, 5981–5985.

    Article  CAS  Google Scholar 

  • IsHak, W. W., Kahloon, M., & Fakhry, H. (2011). Oxytocin role in enhancing well-being: A literature review. Journal of Affective Disorders, 130, 1–9.

    Article  CAS  Google Scholar 

  • Izard, C. E. (1991). The psychology of emotions. Plenum.

    Book  Google Scholar 

  • James, W. (1884). What is an emotion? Mind, 9, 188–205.

    Article  Google Scholar 

  • Jurek, B., & Neumann, I. D. (2018). The oxytocin receptor: From intracellular signaling to behavior. Physiological Reviews, 98, 1805–1908.

    Article  CAS  Google Scholar 

  • Kemp, A. H., & Guastella, A. J. (2010). Oxytocin: Prosocial behavior, social salience, or approach-related behavior? Biological Psychiatry, 67, e33–34.

    Article  Google Scholar 

  • Kirsch, M., Gruber, I., Ruf, M., Kiefer, F., & Kirsch, P. (2016). Real-time functional magnetic resonance imaging neurofeedback can reduce striatal cue-reactivity to alcohol stimuli. Addiction Biology, 21, 982–992.

    Article  Google Scholar 

  • Kirsch, P. (2015). Oxytocin in the socioemotional brain: Implications for psychiatric disorders. Dialogues in Clinical Neuroscience, 17, 463–476.

    Article  Google Scholar 

  • Kirsch, P., Esslinger, C., Chen, Q., Mier, D., Lis, S., Siddhanti, S., et al. (2005). Oxytocin modulates neural circuitry for social cognition and fear in humans. Journal of Neuroscience, 25, 11489–11493.

    Article  CAS  Google Scholar 

  • Kirsch, P., Ronshausen, S., Mier, D., & Gallhofer, B. (2007). The influence of antipsychotic treatment on brain reward system reactivity in schizophrenia patients. Pharmacopsychiatry, 40, 196–198.

    Article  CAS  Google Scholar 

  • Kjaer, T. W., Bertelsen, C., Piccini, P., Brooks, D., Alving, J., & Lou, H. C. (2002). Increased dopamine tone during meditation-induced change of consciousness. Cognitive Brain Research, 13, 255–259.

    Article  CAS  Google Scholar 

  • Knobloch, H. S., Charlet, A., Hoffmann, L. C., Eliava, M., Khrulev, S., Cetin, A. H., et al. (2012). Evoked axonal oxytocin release in the central amygdala attenuates fear response. Neuron, 73, 553–566.

    Article  CAS  Google Scholar 

  • Koob, G. F., & Goeders, N. E. (1989). Neuroanatomical substrates of drug self-administration. In J. M. Liebman & S. J. Cooper (Hrsg.), The neuropharmacological basis of reward (S. 214–263). Oxford University Press.

    Google Scholar 

  • Kosfeld, M., Heinrichs, M., Zak, P. J., Fischbacher, U., & Fehr, E. (2005). Oxytocin increases trust in humans. Nature, 435, 673–676.

    Article  CAS  Google Scholar 

  • Kovacs, G. L., & De Wied, D. (1994). Peptidergic modulation of learning and memory processes. Pharmacological Reviews, 46, 269–291.

    CAS  Google Scholar 

  • Lange, C. (1887). Ueber Gemüthsbewegungen. Thomas.

    Google Scholar 

  • Le Moal, M., & Simon, H. (1991). Mesocorticolimbic dopaminergic network: Functional and regulatory roles. Physiology Reviews, 71, 155–234.

    Article  Google Scholar 

  • LeDoux, J. E. (2000). Emotion circuits in the brain. Annual Reviews of Neuroscience, 23, 155–184.

    Article  CAS  Google Scholar 

  • Liu, Y., & Wang, Z. X. (2003). Nucleus accumbens oxytocin and dopamine interact to regulate pair bond formation in female prairie voles. Neuroscience, 121, 537–544.

    Article  CAS  Google Scholar 

  • McBride, W. J., Murphy, J. M., & Ikemoto, S. (1999). Localization of brain reinforcement mechanisms: Intracranial self-administration and intracranial place-conditioning studies. Behavioural Brain Research, 101, 129–152.

    Article  CAS  Google Scholar 

  • McCarthy, M. M. (1995). Estrogen modulation of oxytocin and its relation to behavior. In R. Ivell & J. A. Russell (Hrsg.), Oxytocin. Cellular and molecular approaches in medicine and research (S. 235–245). Plenum.

    Google Scholar 

  • Menon, V., & Levitin, D. J. (2005). The rewards of music listening: Response and physiological connectivity of the mesolimbic system. NeuroImage, 28, 175–184.

    Article  CAS  Google Scholar 

  • Meyer-Lindenberg, A., Domes, G., Kirsch, P., & Heinrichs, M. (2011). Oxytocin and vasopressin in the human brain: Social neuropeptides for translational medicine. Nature Reviews Neuroscience, 12, 524–538.

    Article  CAS  Google Scholar 

  • Monin, J. K., Goktas, S. O., Kershaw, T., & DeWan, A. (2019). Associations between spouses' oxytocin receptor gene polymorphism, attachment security, and marital satisfaction. PloS One, 14, e0213083.

    Google Scholar 

  • Moore, H., West, A. R., & Grace, A. A. (1999). The regulation of forebrain dopamine transmission: Relevance to the pathophysiology and psychopathology of schizophrenia. Biological Psychiatry, 46, 40–55.

    Article  CAS  Google Scholar 

  • Murphy, M. R., Checkley, S. A., Seckl, J. R., & Lightman, S. L. (1990). Naloxone inhibits oxytocin release at orgasm in man. Journal of Clinical Endocrinology and Metabolism, 71, 1056–1058.

    Article  CAS  Google Scholar 

  • Nesse, R. M. (2004). Natural selection and the elusiveness of happiness. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, 359, 1333–1347.

    Article  Google Scholar 

  • Neumann, I. D. (2002). Involvement of the brain oxytocin system in stress coping: Interactions with the hypothalamo-pituitary-adrenal axis. In D. Poulain, S. Oliet, & D. Theodosis (Hrsg.), Vasopressin and oxytocin. From genes to clinical applications (S. 147–162). Elsevier.

    Google Scholar 

  • Nishioka, T., Anselmo-Franci, J. A., Li, P., Callahan, M. F., & Morris, M. (1998). Stress increases oxytocin release within the hypothalamic paraventricular nucleus. Brain Research, 781, 56–60.

    Article  Google Scholar 

  • Olazabal, D. E., & Young, L. J. (2006). Oxytocin receptors in the nucleus accumbens facilitate „spontaneous“ maternal behavior in adult female prairie voles. Neuroscience, 141, 559–568.

    Article  CAS  Google Scholar 

  • Olds, J., & Milner, P. (1954). Positive reinforcement produced by electrical stimulation of septal area and other regions of rat brain. Journal of Comparative and Physiological Psychology, 47, 419–427.

    Article  CAS  Google Scholar 

  • Panksepp, J. (2005). Affective neuroscience: The foundations of human and animal emotions. Oxford University Press.

    Google Scholar 

  • Pedersen, C. A., & Prange, A. J. (1979). Induction of maternal behavior in virgin rats after intracerebroventricular administration of oxytocin. Proceedings of the National Academy of Sciences of the United States of America, 76, 6661–6665.

    Article  CAS  Google Scholar 

  • Phillips, A. G., & Fibiger, H. C. (1978). The role of dopamine in maintaining intracranial self-stimulation in the ventral tegmentum, nucleus accumbens, and medial prefrontal cortex. Canadian Journal of Psychology, 32, 58–66.

    Article  CAS  Google Scholar 

  • Pitman, R. K., Orr, S. P., & Lasko, N. B. (1993). Effects of intranasal vasopressin and oxytocin on physiologic responding during personal combat imagery in Vietnam veterans with posttraumatic stress disorder. Psychiatry Research, 48, 107–117.

    Article  CAS  Google Scholar 

  • Reuter, M., & Hennig, J. (2005). Association of the functional catechol-O-methyltransferase VAL158MET polymorphism with the personality trait of extraversion. NeuroReport, 16, 1135–1138.

    Article  CAS  Google Scholar 

  • Reuter, M., Schmitz, A., Corr, P., & Hennig, J. (2006). Molecular genetics support Gray’s personality theory: The interaction of COMT and DRD2 polymorphisms predicts the behavioural approach system. International Journal of Neuropsychopharmacology, 9, 155–166.

    CAS  Google Scholar 

  • Reymond, M. J., & Porter, J. C. (1985). Involvement of hypothalamic dopamine in the regulation of prolactin secretion. Hormone Research, 22, 142–152.

    Article  CAS  Google Scholar 

  • Roth, R. H., & Elsworth, J. D. (1995). Biochemical pharmacology of midbrain dopamine neurons. In F. E. Bloom & D. J. Kupfer (Hrsg.), Psychopharmacology: The fourth generation of progress (S. 227–243). Raven Press.

    Google Scholar 

  • Sauer, C., Montag, C., Reuter, M., & Kirsch, P. (2019). Oxytocinergic modulation of brain activation to cues related to reproduction and attachment: Differences and commonalities during the perception of erotic and fearful social scenes. International Journal of Psychophysiology, 136, 87–96.

    Article  Google Scholar 

  • Scheele, D., Wille, A., Kendrick, K. M., Stoffel-Wagner, B., Becker, B., Gunturkun, O., Maier, W., & Hurlemann, R. (2013). Oxytocin enhances brain reward system responses in men viewing the face of their female partner. Proceedings of the National Academy of Science, 110, 20308–20313.

    Article  CAS  Google Scholar 

  • Schneider, F., Habel, U., Volkmann, J., Regel, S., Kornischka, J., Sturm, V., et al. (2003). Deep brain stimulation of the subthalamic nucleus enhances emotional processing in Parkinson disease. Archives of General Psychiatry, 60, 296–302.

    Article  Google Scholar 

  • Shahrokh, D. K., Zhang, T. Y., Diorio, J., Gratton, A., & Meaney, M. J. (2010). Oxytocin-dopamine interactions mediate variations in maternal behavior in the rat. Endocrinology, 151, 2276–2286.

    Article  CAS  Google Scholar 

  • Shiota, M. N., Campos, B., Oveis, C., Hertenstein, M. J., Simon-Thomas, E., & Keltner, D. (2017). Beyond happiness: Building a science of discrete positive emotions. Americal Psychologist, 72, 617–643.

    Article  Google Scholar 

  • Small, D. M., Jones-Gotman, M., & Dagher, A. (2003). Feeding-induced dopamine release in dorsal striatum correlates with meal pleasantness ratings in healthy human volunteers. NeuroImage, 19, 1709–1715.

    Article  Google Scholar 

  • Stemmler, G. (2002). Persönlichkeit und Emotion: Bausteine einer biobehavioralen Theorie. In M. Myrtek (Hrsg.), Die Person im biologischen und sozialen Kontext (S. 115–141). Hogrefe.

    Google Scholar 

  • Uvnäs-Moberg, K., Arn, I., & Magnusson, D. (2005). The psychobiology of emotion: The role of the oxytocinergic system. International Journal of Behavioral Medicine, 12, 59–65.

    Article  Google Scholar 

  • Vaitl, D. (1996). Interoception. Biological Psychology, 42, 1–27.

    Article  CAS  Google Scholar 

  • Verhoeff, N. P., Christensen, B. K., Hussey, D., Lee, M., Papatheodorou, G., Kopala, L., et al. (2003). Effects of catecholamine depletion on D2 receptor binding, mood, and attentiveness in humans: A replication study. Pharmacology, Biochemistry and Behavior, 74, 425–432.

    Article  CAS  Google Scholar 

  • Voruganti, L., Slomka, P., Zabel, P., Costa, G., So, A., Mattar, A., et al. (2001). Subjective effects of AMPT-induced dopamine depletion in schizophrenia: Correlation between dysphoric responses and striatal D(2) binding ratios on SPECT imaging. Neuropsychopharmacology, 25, 642–650.

    Article  CAS  Google Scholar 

  • Weisman, O., Zagoory-Sharon, O., & Feldman, R. (2012). Oxytocin administration to parent enhances infant physiological and behavioral readiness for social engagement. Biological Psychiatry, 72, 982–989.

    Article  CAS  Google Scholar 

  • Wigton, R., Radua, J., Allen, P., Averbeck, B., Meyer-Lindenberg, A., McGuire, P., Shergill, S. S., & Fusar-Poli, P. (2015). Neurophysiological effects of acute oxytocin administration: Systematic review and meta-analysis of placebo-controlled imaging studies. Journal of Psychiatry and Neuroscience, 40, E1-22.

    Article  Google Scholar 

  • Wise, R. A. (1980). The dopamine synapse and the notion of ‘pleasure centers’ in the brain. Trends in Neurosciences, 3, 91–95.

    Article  CAS  Google Scholar 

  • Young, L. J., Lim, M. M., Gingrich, B., & Insel, T. R. (2001). Cellular mechanisms of social attachment. Hormones and Behavior, 40, 133–138.

    Article  CAS  Google Scholar 

  • Zak, P. J., Kurzban, R., & Matzner, W. T. (2004). The Neurobiology of Trust. Annals of the New York Academy of Sciences, 1032, 224–227.

    Article  Google Scholar 

  • Zoicas, I., Slattery, D. A., & Neumann, I. D. (2014). Brain oxytocin in social fear conditioning and its extinction: Involvement of the lateral septum. Neuropsychopharmacology, 39, 3027–3035.

    Article  CAS  Google Scholar 

  • Zanos, P., Georgiou, P., Weber, C., Robinson, F., Kouimtsidis, C., Niforooshan, R., & Bailey, A. (2018). Oxytocin and opioid addiction revisited: Old drug, new applications. British Journal of Pharmacology, 175, 2809–2824.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Kirsch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Der/die Autor(en), exklusiv lizenziert durch Springer-Verlag GmbH, DE, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kirsch, P., Ditzen, B. (2022). Neuromodulatorische Einflüsse auf das Wohlbefinden: Dopamin und Oxytocin. In: Frank, R., Flückiger, C. (eds) Therapieziel Wohlbefinden. Psychotherapie: Praxis. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-63821-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-63821-7_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-63820-0

  • Online ISBN: 978-3-662-63821-7

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics