Skip to main content

Photobiomodulation (PBM)

  • Chapter
  • First Online:
Evidenzbasierte Elektrotherapie
  • 1511 Accesses

Zusammenfassung

Dass Licht therapeutisch eingesetzt werden kann, ist schon lange bekannt. Nachdem es gelungen war, den Laser zu entwickeln, ist man mit dieser Lösung auf der Suche nach Problemen eher zufällig auf therapeutische Anwendungsmöglichkeiten gestoßen und Laser wurde schon rasch zu verschiedenen Zwecken eingesetzt. Die Forschung hat der Anwendung eine recht solide wissenschaftliche Basis verschafft. Wir glauben ziemlich genau zu wissen, wo das Licht seine Wirkung entfaltet, und auch betreffend der Dosierung haben wir in den letzten 10 Jahren sehr viel dazugelernt. Weil der Prozess, wo das Licht eingreift, von grundlegender Bedeutung für fast sämtliche physiologischen Abläufe ist, ist Laser bei einer Vielzahl von Pathologien wirksam. Im Nachfolgenden wird die Wirkung von Laser erklärt und es werden genaue Dosierungsangaben vermittelt. Auf SpringerLink finden sich ein Befundbogen, eine Checkliste zum Behandlungsablauf und eine allgemeine Übersicht zu den verschiedenen Anwendungen zum Herunterladen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • Agaiby AD, Ghali LR, Wilson R, Dyson M (2000) Laser Modulation of Angiogenic Factor Production by T-Lymphocytes. Lasers Surg Med 26(4):357–363

    Article  CAS  PubMed  Google Scholar 

  • Aimbire F, Albertine R, de Magalhães RG, Lopes-Martins RAB, Castro-Faria-Neto HC, Zângaro RA, Chavantes MC, Pacheco MTT (2005) Effect of LLLT Ga–Al–As (685 nm) on LPS-Induced Inflammation of the Airway and Lung in the Rat. Lasers in Medical Science 20:11-20

    Article  CAS  PubMed  Google Scholar 

  • Aimbire F, Albertini R, Pacheco MTT, Castro-Faria-Neto HC, Leonardo PSLM, Iversen VV, Lopes-Martins RAB, Bjordal JM (2006) Low-level laser therapy induces dose-dependent reduction of TNFα levels in acute inflammation. Photomed Laser Surg 24(1):33–37

    Article  CAS  PubMed  Google Scholar 

  • Aimbire F, Lopes-Martins RAB, Albertini R, Pacheco MTT, Castro-Faria-Neto HC, Martins PSLL, Bjordal JM (2007) Effect of low-level laser therapy on hemorrhagic lesions induced by immune complex in rat lungs. Photomed Laser Surg 25(2):112–117

    Article  CAS  PubMed  Google Scholar 

  • Albertini R, Aimbire FSC, Correa FI, Ribeiro W, Cogo JC, Antunes E, Teixeira SA, De Nucci G, Castro-Faria-Neto HC, Zângaro RA, Lopes-Martins RAB (2004) Effects of Different Protocol Doses of Low Power Gallium–Aluminum–Arsenate (Ga–Al–As) Laser Radiation (650 nm) on Carrageenan Induced Rat Paw Oedema. J Photochem Photobiol 74(2-3):101–107

    Article  CAS  Google Scholar 

  • Alves AN, Porta Santos Fernandes K, Deana AM, Bussadori SK, Mesquita-Ferrari RA (2014) Effects of low-level laser therapy on skeletal muscle repair: a systematic review. Am J Phys Med Rehabil 93(12):1073–1085

    Article  PubMed  Google Scholar 

  • Anders JJ, Lanzafame RJ, Arany PR (2015) Low-level light/laser therapy versus photobiomodulation. Photomed Laser Surg 33(4):183–184

    Article  PubMed  PubMed Central  Google Scholar 

  • Ayuk SM, Abrahamse H, Houreld NN (2016) The role of matrix metalloproteinases in diabetic wound healing in relation to photobiomodulation. J Diabetes Res 2016:2897656

    Article  PubMed  PubMed Central  Google Scholar 

  • Bjordal J, Couppé C, Chow R, Tuner J, Ljunggren EA (2003) A systematic review of low laser therapy with location-specific doses for pain and chronic joint disorders. Aust J Physiother 49:107–116

    Article  PubMed  Google Scholar 

  • Bjordal JM, Johnson MI, Iversen V, Aimbre F, Lopes-Martins RAB (2006) Low-level laser therapy in acute pain: a systematic review of possible mechanisms of action and clinical effects in randomized placebo-controlled trials. Photomed Laser Surg 24(2):158–168

    Article  CAS  PubMed  Google Scholar 

  • van Breugel HHFI, Bär PRD (1992) Power density and exposure time of He-Ne laser irradiation are more important than total energy dose in photo-biomodulation of human fibroblasts in vitro. Lasers Surg Med 12:528–537

    Article  PubMed  Google Scholar 

  • Bryson B (2004) A Short History of Nearly Everything. Broadway Books; 1st edition (September 14) ISBN-13: 978-0767908184

    Google Scholar 

  • Campana VR, Moya M, Gavotto A, Soriano F, Juri HO, Spitale LS, Simes JC, Palma JA (1999) The Realtive Effects of He-Ne Laser and Meloxicam on Experimentally Induced Inflammation. Laser Therapy 11:36–41

    Article  Google Scholar 

  • Ceylan Y, Hizmetli S, Siliğ Y (2004) The effects of infrared laser and medical treatments on pain and serotonin degradation products in patients with myofascial pain syndrome. A controlled trial. Rheumatol Int 24(5):260–263

    Article  CAS  PubMed  Google Scholar 

  • Chaves MEA, Araújo AR, Costa Cruz Piancastelli A, Pinotti M (2014) Effects of low-power light therapy on wound healing: LASER x LED. An Bras Dermatol 89(4):616–623

    Article  PubMed  PubMed Central  Google Scholar 

  • Chung H, Dai T, Sharma SK, Huang Y, Carroll JD, Hamblin MR (2012) The nuts and bolts of low-level laser (light) therapy. Ann Biomed Eng 40:516–533

    Article  PubMed  Google Scholar 

  • Cotton AM (2004) A review of the principles and use of lasers in lower limb problems. Int J Low Extrem Wounds 3(3):133–142

    Article  CAS  PubMed  Google Scholar 

  • Eichhorn Bilodeau S, Wu BS, Rufyikiri AS, MacPherson S, Lefsrud M (2019) An update on plant photobiology and implications for cannabis production. Front Plant Sci 10:296

    Article  PubMed  PubMed Central  Google Scholar 

  • Enwemeka CS, Parker JC, Dowdy DS, Harkness EE, Sanford LE, Woodruff LD (2004) The efficacy of low-power lasers in tissue repair and pain control: a meta-analysis study. Photomed Laser Surg 22(4):323–329

    Article  PubMed  Google Scholar 

  • Ferreira DM, Zângaro RA, Balbin Villaverde A, Cury Y, Frigo L, Picolo G, Longo I, Barbosa DG (2005) Analgesic effect of He-Ne (632.8 nm) low-level laser therapy on acute inflammatory pain. Photomed Laser Surg 23(2):177–181

    Article  CAS  PubMed  Google Scholar 

  • Freitas de Freitas L, Hamblin MR (2016) Proposed mechanisms of photobiomodulation or low-level light therapy. IEEE J Sel Top Quantum Electron 22(3):7000417

    Article  Google Scholar 

  • Gál P, Stausholm MB, Kováč I, Erik Dosedla E, Luczy J, Sabol F, Bjordal JM (2018) Should open excisions and sutured incisions be treated differently? A review and meta-analysis of animal wound models following low-level laser therapy. Lasers Med Sci 33(6):1351–1362

    Article  PubMed  Google Scholar 

  • Guimarães Prianti AC Jr, Silva JA Jr, Dos Santos RF, Rosseti IB, Costa MC (2014) Low-level Laser Therapy (LLLT) reduces the COX-2 mRNA expression in both subplantar and total brain tissues in the model of peripheral inflammation induced by administration of carrageenan. Lasers Med Sci 29(4):1397–1403

    Article  Google Scholar 

  • Hamblin MR (2016) Photobiomodulation or low-level laser therapy. Biophotonics 9(11–12):1122–1124

    Article  PubMed  Google Scholar 

  • Hamblin MR, Demidova TN (2006) Mechanisms of low level light therapy. Proc SPIE 6140:1–12

    Google Scholar 

  • Hamblin MR, Huang YY, Heiskanen V (2019) Non-mamalian hosts and photobiomodulation: do all life-forms respond to light? Photochem Photobiol 95(1):126–139

    Article  CAS  PubMed  Google Scholar 

  • Hashmi JT, Huang YY, Osmani BZ, Sharma SK, Naeser MA, Hamblin MR (2010) Role of low-level laser therapy in neurorehabilitation. PM R Dec;2(12 Suppl 2):S292–305

    Google Scholar 

  • He M, Zhang B, Shen N, Wu N, Sun JA (2018) Systematic review and meta-analysis of the effect of Low-Level Laser Therapy (LLLT) on chemotherapy-induced oral mucositis in pediatric and young patients. Eur J Pediatr 177(1):7–17

    Article  PubMed  Google Scholar 

  • Heiskanen V, Hamblin MR (2018) Photobiomodulation: lasers vs. light emitting diodes? Photochem Photobiol Sci 17(8):1003–1017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Honmura A, Yanase M, Obata J, Haruki E (1992) Therapeutic effect of Ga-Al-As diode laser irradiation on experimentally induced inflammation in rats. Lasers Surg Med 12(4):441–449

    Article  CAS  PubMed  Google Scholar 

  • Honmura A, Akemi Ishii A, Yanase M, Obata J, Haruki E (1993a) Analgesic effect of Ga-Al-As diode laser irradiation on hyperalgesia in carrageen induced inflammation. Lasers Surg Med 13(4):463–469

    Article  CAS  PubMed  Google Scholar 

  • Honmura A, Ishii A, Yanase M, Obata J, Haruki E (1993b) Therapeutic effect of GaAlAs diode laser on experimentally induced inflammation in rats. Lasers Surg Med 13:463–469

    Article  CAS  PubMed  Google Scholar 

  • Huang YY, Chen ACH, Carroll JD, Hamblin MR (2009) Biphasic dose response in low level light therapy. Dose-Response 7:358–383

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang YY, Sharma SK, Carroll J, Hamblin MR (2011) Biphasic dose response in low level light therapy - an update. Dose Response 9(4):602-18

    Google Scholar 

  • Ihsan FRM (2005) Low-level laser therapy accelerates collateral circulation and enhances microcirculation. Photomed Laser Surg 23(3):289–294

    Article  CAS  PubMed  Google Scholar 

  • de Jesus JF, Spadacci-Morena DD, dos Anjos Rabelo ND, Pinfildi CE, Fukuda TY, Plapler H (2015) Low-Level Laser Therapy in IL-1β, COX-2, and PGE2 Modulation in Partially Injured Achilles Tendon. Lasers Med Science 30(1):153–158

    Article  PubMed  Google Scholar 

  • Joensen J, Ovsthus K, Reed RK, Hummelsund S, Iversen VV, Lopes-Martins RÁ, Bjordal JM (2012) Skin penetration timeprofiles for continuous 810 nm and Superpulsed 904 nm lasers in a rat model. Photomed Laser Surg 30(12):688–694

    Google Scholar 

  • Kana J, Hutschenreiter G, Haina D, Waidelich W (1981) Effect of low-power density laser radiation on healing of open skin wounds in rats. Arch Surg 116(3):293–296

    Article  CAS  PubMed  Google Scholar 

  • Karu T (1987) Photobiological fundamentals of low power laser therapy. IEEE J Quantum Electron 23(10):1703–1717.

    Article  Google Scholar 

  • Karu T (1988) Molecular mechanisms of the therapeutic effect of low-level laser therapy. Lasers Life Sci 2(1):1245–1249

    Google Scholar 

  • Karu T (1989) Photobiology of low-power laser effects. Health Phys 56(5):691–704

    Article  CAS  PubMed  Google Scholar 

  • Karu T (1990) Effects of visible radiation on cultured cells. Photochem Photobiol 52(6):1089–1098

    Article  CAS  PubMed  Google Scholar 

  • Karu T (1999) Primary and secondary mechanisms of action of visible to near-IR radiation on cells. J Photochem Photobiol 49:1–17

    Article  CAS  Google Scholar 

  • Karu T (2010) Multiple roles of cytochrome c oxidase in mamalian cells under action of red and IR-A radiation. IUBMB Life 62:607–610

    Article  CAS  PubMed  Google Scholar 

  • Karu T, Kolyakov M (2005) Exact action spectra for cellular responses relevant to phototherapy. Photomed Laser Surg 23(4):355–361

    Article  CAS  PubMed  Google Scholar 

  • Karu T, Tiphlova O, Fedoseyeva G (1984) Biostimulating action of low-intensity monochromatic visible light: is it possible? Laser Chem 5:19–25

    Article  CAS  Google Scholar 

  • Karu T, Pyatibrat L, Kalendo G (1995) Irradiation with He-Ne laser increases ATP-levels in cells cultivated in vitro. J Photochem Photobio 27:219–223

    Article  CAS  Google Scholar 

  • Karu T, Pyatibrat L, Kolyakov S, Afanasyeva N (2005) Absorption measurements of a cell monolayer relevant to phototherapy: reduction of cytochrome C oxidase under near IR radiation. J Photochem Photobiol 81:98–106

    Article  CAS  Google Scholar 

  • Kipshidze N, Nikolaychik V, Keelan MH, Shankar LR, Khanna A, Kornowski R, Leon M, Moses J (2001) Low-power helium:neon laser irradiation enhances production of vascular endothelial growth factor and promotes growth of endothelial cells in vitro. Lasers Surg Med 28(4):355–64N

    Article  CAS  PubMed  Google Scholar 

  • Kolari PJ, Airaksinen O (1993) Poor penetration of infra-red and helium neon low power laser light into the dermal tissue. Acupunct Electrother Res 18(1):17–21

    Article  CAS  PubMed  Google Scholar 

  • Kusnetzow A, Dukkipati A, Babu KR, Singh D, Vought BW, Knox BE, Birge RR (2001) The photobleaching sequence of a short-wavelength visual pigment. Biochemistry 3;40(26):7832–7844

    Google Scholar 

  • Laakso EL, Richardson C, Cramond T (1993) Quality of light – is laser necessary for effective photobiostimulation? Aust J Physiother 39:87–92

    Article  CAS  PubMed  Google Scholar 

  • Laakso EL, Cramond T, Richardson C, Galligan JP (1994) Plasma ACTH and β-endorphin levels in response to Low Level Laser Therapy (LLLT) for myofascial trigger points. Laser Therapy 6:133–142

    Article  Google Scholar 

  • Law D, McDonough S, Bleakley C, Baxter GD, Tumilty S (2015) Laser acupuncture for treating musculoskeletal pain: a systematic review with meta-analysis. J Acupunct Meridian Stud 8(1):2–16

    Article  PubMed  Google Scholar 

  • Machado RS, Viana S, Sbruzzi G (2017) Low-level laser therapy in the treatment of pressure ulcers: systematic review. Lasers Med Sci 32(4):937–944

    Article  PubMed  Google Scholar 

  • Mason MG, Nicholls P, Cooper CE (2014) Re-evaluation of the near infrared spectra of mitochondrial cytochrome c oxidase: implications for non invasive in vivo monitoring of tissues. Biochim Biophys Acta 1837(11):1882–1891

    Article  CAS  PubMed  Google Scholar 

  • Medrado ARAP, Pugliese LS, Reis SRA, Andrade ZA (2003) Influence of low level laser therapy on wound healing and its biological action upon myofibroblasts. Lasers Surg Med 32(3):239–244

    Article  PubMed  Google Scholar 

  • Mester E, Szende B, Gärtner P (1968) The effect of laser beams on the growth of hair in mice. Radiobiol Radiother 9(5):621–626

    CAS  Google Scholar 

  • Planck M (1900) On the theory of the energy distribution law of the normal spectrum. Verhandl. Dtsch. phys. Ges., 2, 237 Zugriff Januar 2008 http://www.ffn.ub.es/luisnavarro/nuevo_maletin/Planck%20(1900),%20Distribution%20Law.pdf

  • Pessoa ES, Melhado RM, Theodoro LH, Garcia VGA (2004) Histologic assessment of the influence of low-intensity laser therapy on wound healing in steroid-treated animals. Photomed Laser Surg 22(3):199–204

    Article  PubMed  Google Scholar 

  • Prianti AC Jr, Silva JA Jr, Dos Santos RF, Rosseti IB, Costa MS (2014) Low-level laser therapy (LLLT) reduces the COX-2 mRNA expression in both subplantar and total brain tissues in the model of peripheral inflammation induced by administration of carrageenan. Lasers Med Sci Jul;29(4):1397–403

    Google Scholar 

  • Ristow M (2014) Unraveling the truth about antioxidants: mitohormesis explains ROS-induced health benefits. Nat Med 20:709–711

    Article  CAS  PubMed  Google Scholar 

  • Rochkind S, Nissan M, Lubart R, Avram J, Bartal A (1988) The in-vivo response to direct low energy laser irradiation. Acta Neurochir 94:74–77

    Article  CAS  PubMed  Google Scholar 

  • Sapolski R, Rivier C, Yamamoto G, Plotsky P, Vale W (1987) Interleukin-1 stimulates the secretion of hypothalamic corticotropin-releasing factor. Science 238(4826):522–524

    Article  Google Scholar 

  • Shadel GS, Horvath TL (2015) Mitochondrial ROS signaling in organismal homeostasis. Cell 163:560–569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimizu N, Yamaguchi M, Goseki T, Shibata Y, Takiguchi H, Iwasawa T, Abiko Y (1995) Inhibition of prostaglandin E2 and interleukin-1 beta production by low power laser irradiation in stretched human periodontal ligament cells. J Dent Res 74:1382–1388

    Article  CAS  PubMed  Google Scholar 

  • Simunovic Z (1996) Low level laser therapy with triggerpoints technique: a clinical study on 243 patients. J Clin Laser Med Surg 14(4):163–167

    Article  CAS  PubMed  Google Scholar 

  • Skinner SM, Gage JP, Wilce PA, Shaw RM (1996) A preliminary study of the effects of laser radiation on collagen metabolism in cell culture. Aust Dent J 41(3):188–192

    Article  CAS  PubMed  Google Scholar 

  • Suter VGA, Sjölund S, Bornstein MM (2017) Effect of laser on pain relief and wound healing of recurrent aphthous stomatitis: a systematic review. Lasers Med Sci 32(4):953–963

    Article  PubMed  Google Scholar 

  • Tam G (1999) Low power laser therapy and analgesic action. J Clin Laser Med Surg 17(1):29–33

    Article  CAS  PubMed  Google Scholar 

  • Walt Dosierungsvorschläge. https://waltza.co.za/documentation-links/recommendations/dosage-recommendations/ Zugegriffen am 13.06.2020

  • Wang Y, Huang YY, Wang Y, Lyu P, Hamblin MR (2016) Photobiomodulation of human adipose-derived stem cells using 810 nm and 980 nm lasers operates via different mechanisms of action. Biochim Biophys Acta 1861(2):441–449

    Article  PubMed Central  Google Scholar 

  • Woodruff LD, Bounkeo JM, Brannon WM, Dawes KS, Barham CD, Waddell DL, Enwemeka CS (2004) The efficacy of laser therapy in wound repair: a meta-analysis of the literature. Photomed Laser Surg 22(3):241–247

    Article  PubMed  Google Scholar 

  • Zecha JAEM, Raber-Durlacher JE, Nair RG, Epstein JB, Elad S, Hamblin MR, Barasch A, Migliorati CA, Milstein DMJ, Genot MT, Lansaat L, van der Brink R, Arnabat-Dominguez J, van der Molen L, Jacobi I, van Diessen J, de Lange J, Smeele LE, Schubert MM, Bensadoun RJ (2016) Low-level laser therapy/photobiomodulation in the management of side effects of chemoradiation therapy in head and neck cancer: part 2: proposed applications and treatment protocols. Support Care Cancer 24(6):2793–2805

    Article  PubMed  PubMed Central  Google Scholar 

  • Zinman L, Ngo M, Ng E, Nwe K, Gogov S, Bril V (2004) Low intensity laser therapy for painful symptoms of diabetic sensimotor polyneuropathy. Diabetes Care 27(4):921–924

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

8.1 Elektronisches Zusatzmaterial

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Der/die Autor(en), exklusiv lizenziert durch Springer-Verlag GmbH, DE, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

van Kerkhof, P. (2022). Photobiomodulation (PBM). In: Evidenzbasierte Elektrotherapie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-63536-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-63536-0_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-63535-3

  • Online ISBN: 978-3-662-63536-0

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics