Skip to main content

Transkutane elektrische Nervenstimulation (TENS)

  • Chapter
  • First Online:
Evidenzbasierte Elektrotherapie
  • 1647 Accesses

Zusammenfassung

TENS bezeichnet die Anwendung von verschiedenen Impulsstromformen zur Schmerzlinderung und Trophikverbesserung. Weil man bei TENS normalerweise kompensierte Impulse benutzt, treten im Gewebe nicht die gleiche Effekte auf wie beim Gleichstrom und Impulsstrom mit einem Gleichstromanteil. Deshalb bekommt TENS ein eigenes Kapitel. Es gibt eine große Verschiedenheit an Geräten und Parametern, wobei man grundsätzlich zwei Hauptformen unterscheiden kann: High Frequency TENS mit einer eher hohen Frequenz und Low Frequency TENS mit einer eindeutig niedrigeren Frequenz. Die Methoden aktivieren unterschiedliche Schmerzhemmungsmechanismen. Auf diese Unterschiede wird ausführlich eingegangen. Außer TENS gibt es den Interferenzstrom aus dem Bereich der Mittelfrequenz. Auch diese Methode wird benutzt, um über die Haut Nerven zu reizen. Es wird ausführlich auf die Anwendungsmöglichkeiten, Vorteile und Nachteile der verschiedenen Methoden eingegangen. Auf SpringerLink finden sich ein Informationsblatt für Patienten, ein Befundbogen, eine Checkliste zum Behandlungsablauf und eine allgemeine Übersicht zu den verschiedenen Anwendungen zum Herunterladen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 01 January 2022

    Es wurden inhaltliche Korrekturen zu diesem Kapitel vorgenommen

Literatur

  • Aarskog R, Johnson MI, Demmink JH, Lofthus A, Iversen V, Lopes-Martins R, Joensen J, Bjordal JM (2007) Is mechanical pain threshold after Transcutaneous Electrical Nerve Stimulation (TENS) increased locally and unilaterally? A randomized placebo-controlled trial in healthy subjects. Physiother Res Int 12(4):251–263

    Article  PubMed  Google Scholar 

  • Albornoz-Cabello M, Maya-Martín J, Domínguez-Maldonado G, Espejo-Antúnez L, Heredia-Rizo AM (2017) Effect of interferential current therapy on pain perception and disability level in subjects with chronic low back pain: a randomized controlled trial. Clin Rehabil 31(2):242–249

    Google Scholar 

  • den Adel RV, Luykx RHJ (2005) Nieder- und mittelfrequente Elektrotherapie. Therapie Handbuch, Enraf Nonius

    Google Scholar 

  • Ainsworth L, Budelier K, Clinesmith M, Fiedler A, Landstrom R, Leeper BJ, Moeller LA, Mutch S, O’Dell K, Ross J, Radhakrishnan R, Sluka KA (2006) Transcutaneous electrical nerve stimulation (TENS) reduces chronic hyperalgesia induced by muscle inflammation. Pain 120:182–187

    Article  PubMed  Google Scholar 

  • Allen JD, Mattacola CG, Perrin DH (1999) Effect of microcurrent stimulation on delayed-onset muscle soreness: a double-blind comparison. J Athl Train 34(4):334–337

    CAS  PubMed  PubMed Central  Google Scholar 

  • Almeida CC, Silva VZMD, Júnior GC, Liebano RE, Durigan JLQ (2018) Transcutaneous electrical nerve stimulation and interferential current demonstrate similar effects in relieving acute and chronic pain: a systematic review with meta-analysis. Braz J Phys Ther 22(5):347–354

    Article  PubMed  PubMed Central  Google Scholar 

  • Andersson SA, Ericson T, Holmgren E, Lindqvist G (1973) Electro-acupuncture. Effect on pain threshold measured with electrical stimulation of teeth. Brain Res 63:393–396

    Article  CAS  PubMed  Google Scholar 

  • Antony AB, Mazzola AJ, Dhaliwal GS, Hunter CW (2019) Neurostimulation for the treatment of chronic head and facial pain: a literature review. Pain Pysician 22(5):447–477

    Google Scholar 

  • Asadi MR, Torkaman G (2014) Bacterial inhibition by electrical stimulation. Adv Wound Care 3(2):91–97

    Article  Google Scholar 

  • Avendaño-Coy J, Bravo-Esteban E, Ferri-Morales A, Martínez-de la Cruz R, Gómez-Soriano J (2019) Does frequency modulation of transcutaneous electrical nerve stimulation affect habituation and mechanical hypoalgesia? A randomized, double-blind, sham-controlled crossover trial. Phys Ther 99(7):924–932

    Article  PubMed  Google Scholar 

  • Back SK, Lee J, Hong SK, Na HS (2006) Loss of spinal μ-opioid-receptor is associated with mechanical allodynia in a rat modell of peripheral neuropathia. Pain 123:117–126

    Article  CAS  PubMed  Google Scholar 

  • Badger J, Taylor P, Swain I (2017) The safety of electrical stimulation in patients with pacemakers and implantable cardioverter defibrillators: a systematic review. J Rehabil Assist Technol Eng 4. https://doi.org/10.1177/2055668317745498

  • Bai H, Forrester JV, Zhao M (2011) DC electric stimulation upregulates angiogenic factors in endothelial cells through activation of VEGF receptors. Cytokine 55(1):110–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barker R, Lang T, Hager H et al (2007) The influence of stellate ganglion transcutaneous electrical nerve stimulation on signal quality of pulse oximetry in prehospital trauma care. Anesth Analg 104(5):1150–1153

    Article  CAS  PubMed  Google Scholar 

  • Beatti A, Rayner A, Chipchase L, Souvlis T (2011) Penetration and spread of interferential current in cutaneous, subcutaneous and muscle tissues. Physiotherapy 97(4):319–326

    Google Scholar 

  • Beissner F, Brandau A, Henke C, Felden L, Baumgärtner U, Treede RD, Oertel BG, Lötsch J (2010) Quick discrimination of A(delta) and C fiber mediated pain based on three verbal descriptors. PLoS One 5(9):e12944

    Article  PubMed  PubMed Central  Google Scholar 

  • Bergeron-Vézina K, Corriveau H, Martel M, Harvey MP, Léonard G (2015) High- and low-frequency transcutaneous electrical nerve stimulation does not reduce experimental pain in elderly individuals. Pain 156(10):2093–2099

    Article  PubMed  PubMed Central  Google Scholar 

  • Bhadra N, Kilgore KL (2004) Direct current electrical conduction block of peripheral nerve. IEEE Trans Neural Syst Rehabil Eng 12(3):313–324

    Article  PubMed  Google Scholar 

  • Bing Z, Villanueva L, Le Bars D (1990) Acupuncture and diffuse noxious inhibitory controls: naloxone-reversible depression of activities of trigeminal convergent neurons. Neuroscience 37(3):809–818

    Article  CAS  PubMed  Google Scholar 

  • Bjordal JM, Johnson MI, Lopes-Martins RAB, Bogen B, Chow R, Ljunggren AE (2007) Short-term efficacy of physical interventions in osteoarthritic knee pain. A systematic review and meta-analysis of randomised placebo-controlled trials. BMC Musculoskelet Disord 22(8):51

    Article  Google Scholar 

  • Bjordal JM, Johnson MI, Ljunggreen AE. (2003) Transcutaneous electrical nerve stimulation (TENS) can reduce postoperative analgesic consumption. A meta-analysis with assessment of optimal treatment parameters for postoperative pain. Eur J Pain 7(2):181–8

    Google Scholar 

  • Bouhassira D, Le Bars D, Villanueva L (1987) Heterotopic activation of A delta and C fibres triggers inhibition of trigeminal and spinal convergent neurones in the rat. J Physiol 389:301–317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bowman BR, McNeal DR (1986) Response of single Alpha motoneurons to high frequency pulse trains: firing behaviour and conduction block phenomenon. Appl Neurophysiol 49(3):121–138

    CAS  PubMed  Google Scholar 

  • Bridges PH, Bierema LL, Valentine T (2007) The propensity to adopt evidence-based practice among physical therapists. BMC Health Serv Res 7:103

    Article  PubMed  PubMed Central  Google Scholar 

  • Bromm B, Lullies H (1966) Über den Mechanismus der Reizwirkung mittelfrequenter Wechselströme auf die Nervenmembran. Pflügers Arch. ges. Physiol 289:214–226

    Google Scholar 

  • Buonocore M, Camuzzini N (2007) Increase of the heat pain threshold during and after high-frequency transcutaneous peripheral nerve stimulation in a group of normal subjects. Eura Medicophys 43(2):155–160

    CAS  PubMed  Google Scholar 

  • Buonocore M, Camuzzini N, Dall’Angelo A, Mandrini S, Dalla Toffola E (2015) Contralateral antalgic effect of high-frequency transcutaneous peripheral nerve stimulation. PM R 7(1):48–52

    Article  PubMed  Google Scholar 

  • Burssens P, Forsyth R, Steyaert A, Van Ovost E, Praet M, Verdonk R (2003) Influence of burst TENS stimulation on the healing of Achilles tendon suture in man. Acta Orthop Belg 69(6):528–532

    PubMed  Google Scholar 

  • Calleja-Agius J, Brincat M, Borg M (2013) Skin connective tissue and ageing. Best Pract Res Clin Obstet Gynaecol 27(5):727–740

    Article  PubMed  Google Scholar 

  • Carbonario F, Matsutani LA, Yuan SLK, Marques AP (2013) Effectiveness of high-frequency transcutaneous electrical nerve stimulation at tender points as adjuvant therapy for patients with fibromyalgia. Eur J Phys Rehabil Med 49(2):197–204

    CAS  PubMed  Google Scholar 

  • Carlson T, Andréll P, Ekre O et al (2009) Interference of transcutaneous electrical nerve stimulation with permanent ventricular stimulation: a new clinical problem? Europace 11(3):364–369

    Google Scholar 

  • Castelain PY, Chabeau G (1986) Contact dermatitis after transcutaneous electric analgesia. Contact Dermatitis 15(1):32–35

    Article  CAS  PubMed  Google Scholar 

  • Celik EC, Erhan B, Gunduz B, Lakse E (2013) The effect of low-frequency TENS in the treatment of neuropathic pain in patients with spinal cord injury. Spinal Cord 51(4):334–337

    Article  CAS  PubMed  Google Scholar 

  • Cenik F, Schoberwalter D, Keilani M et al (2016) Neuromuscular electrical stimulation of the thighs in cardiac patients with implantable cardioverter defibrillators. Wien Klin Wochenschr 128(21–22):802–808

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheing GLY, Chan WWY (2009) Influence of choice of electrical stimulation site on peripheral neurophysiological and hypoalgesic effects. J Rehabil Med 41(6):412–417

    Article  PubMed  Google Scholar 

  • Chen CC, Johnson MI (2009) An investigation into the effects of frequency-modulated transcutaneous electrical nerve stimulation (TENS) on experimentally-induced pressure pain in healthy human participants. J Pain 10(10):1029–1037

    Article  PubMed  Google Scholar 

  • Chen CC, Johnson MI (2010) A comparison of transcutaneous electrical nerve stimulation (TENS) at 3 and 80 pulses per second on cold-pressor pain in healthy human participants. Clin Physiol Funct Imaging 30(4):260–268

    Article  PubMed  Google Scholar 

  • Chen L, Tang J, White PF, Sloninsky A, Wender RH, Naruse R, Kariger R (1998) The effect of location of transcutaneous electrical nerve stimulation on postoperative opioid analgesic requirement: acupoint versus nonacupoint stimulation. Anesth Analg 87(5):1129–1134

    CAS  PubMed  Google Scholar 

  • Chesterton LS, Barlas P, Foster NE, Lundeberg T, Wright CC, Baxter GD (2002) Sensory stimulation (TENS): effects of parameter manipulation on mechanical pain thresholds in healthy human subjects. Pain 99(1–2):253–262

    Article  PubMed  Google Scholar 

  • Chesterton LS, Foster NE, Wright CC, Baxter GD, Barlas P (2003) Effects of TENS frequency, intensity and stimulation site parameter manipulation on pressure pain thresholds in healthy human subjects. Pain 106(1-2):73–80

    Google Scholar 

  • Chiang C (1974) A physical theory of acupuncture anesthesia. Physiol Chem Phys 6(1):85–86

    CAS  Google Scholar 

  • Claydon LS, Chesterton LS, Barlas P, Sim J (2008) Effects of simultaneous dual-site TENS stimulation on experimental pain. Eur J Pain 12(6):696–704

    Article  PubMed  Google Scholar 

  • Claydon LS, Chesterton LS, Barlas P, Sim J (2011) Dose-specific effects of transcutaneous electrical nerve stimulation (TENS) on experimental pain: a systematic review. Clin J Pain 27(7):635–647

    Article  PubMed  Google Scholar 

  • Corazza M, Maranini C, Bacilieri S, Virgili A (1999) Accelerated allergic contact dermatitis to a transcutaneous electrical nerve stimulation device. Dermatology 199(3):281

    Article  CAS  PubMed  Google Scholar 

  • Cosmo P, Svensson H, Bornmyr S, Wikström SO (2000) Effects of transcutaneous nerve stimulation on the microcirculation in chronic leg ulcers. Scand J Plast Reconstr Surg Hand Surg 34(1):61–64

    Article  CAS  PubMed  Google Scholar 

  • Cramp AF, Gilsenan C, Lowe AS, Walsh DM (2000) The effect of high- and low-frequency transcutaneous electrical nerve stimulation upon cutaneous blood flow and skin temperature in healthy subjects. Clin Physiol 20(2):150–157

    Article  CAS  PubMed  Google Scholar 

  • van Cranenburgh B (2018) Segmentale Phänomene. Ein Beitrag zu Diagnostik und Therapie. KIENER Verlag; überarbeitete und erweiterte Auflage, ISBN-13: 978-3943324334

    Google Scholar 

  • Crevenna R, Mayr W, Keilani M, Pleiner J, Nuhr M, Quittan M, Pacher R, Fialka-Moser V, Wolzt M (2003) Safety of a combined stretch and endurance training using NMES of thigh muscles in patients with heart failure and bipolar sensing cardiac pacemakers. Wien Klin Wo 115(19–20):710–714

    Article  Google Scholar 

  • Cuypers K, Levin O, Thijs H, Swinnen SP, Meesen RL (2010) Long-term TENS treatment improves tactile sensitivity in MS patients. Neurorehabil Neural Repair 24(5):420–427

    Google Scholar 

  • Daguet I, Bergeron-Vézina K, Harvey MP, Martel M, Léonard G (2018) Transcutaneous electrical nerve stimulation and placebo analgesia: is the effect the same for young and older individuals? Clin Interv Aging 13:335–342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dailey DL, Rakel BA, Vance CGT, Liebano RE, Amrit AS, Bush HM, Lee KS, Lee JE, Sluka KA (2013) Transcutaneous electrical nerve stimulation reduces pain, fatigue and hyperalgesia while restoring central inhibition in primary fibromyalgia. Pain 154(11):2554–2562

    Article  PubMed  PubMed Central  Google Scholar 

  • Defrin R, Ariel E, Peretz C (2005) Segmental noxious versus innocuous electrical stimulation for chronic pain relief and the effect of fading sensation during treatment. Pain 115(1–2):152–160

    Article  PubMed  Google Scholar 

  • Del Vecchio A, Negro F, Holobar A, Casolo A, Folland JP, Felici F, Farina D (2019) You are as fast as your motor neurons: speed of recruitment and maximal discharge of motor neurons determine the maximal rate of force development in humans. J Physiol 597(9):2445–2456

    Article  PubMed  PubMed Central  Google Scholar 

  • Dertinger H (2000) Interferenzstrom: Wirkungsmechanismen und klinische Anwendung. Nachrichten Forschungszentrum Karlsruhe 32:1–2

    Google Scholar 

  • Desantana JM, Santana-Filho VJ, Sluka KA (2008) Modulation between high- and low-frequency transcutaneous electric nerve stimulation delays the development of analgesic tolerance in arthritic rats. Arch Phys Med Rehabil 89(4):754–760

    Article  PubMed  PubMed Central  Google Scholar 

  • DeSantana JM, Da Silva LF, De Resende MA, Sluka KA (2009) Transcutaneous electrical nerve stimulation at both high and low frequencies activates ventrolateral periaqueductal grey to decrease mechanical hyperalgesia in arthritic rats. Neuroscience 163(4):1233–1241

    Article  CAS  PubMed  Google Scholar 

  • Ding L, Song T, Yi C et al (2013) Transcutaneous electrical nerve stimulation (TENS) improves the diabetic cytopathy (DCP) via up-regulation of CGRP and cAMP. PLoS One 8(2):e57477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dorsher PT (2008) Can classical acupuncture points and trigger points be compared in the treatment of pain disorders? Birch’s analysis revisited. J Altern Complement Med 14(4):353–359

    Article  PubMed  Google Scholar 

  • Dunn PA, Rogers D, Halford K (1989) Transcutaneous electrical nerve stimulation at acupuncture points in the induction of uterine contractions. Obstet Gynecol 73(2):286–290

    CAS  PubMed  Google Scholar 

  • Dwyer CM, Chapman RS, Forsyth A (1994) Allergic contact dermatitis from TENS gel. Contact Dermatitis 30(5):305

    Article  CAS  PubMed  Google Scholar 

  • Edel H (1977) Fibel der Elektrodiagnostik und Elektrotherapie, 4. Aufl. Verlag Theodor Steinkopff, Dresden

    Google Scholar 

  • Egger F, Hofer C, Hammerle FP et al (2019) Influence of electrical stimulation therapy on permanent pacemaker function. Wien Klin Wochenschr 131(13–14):313–320

    Google Scholar 

  • Elboim-Gabyzon M, Najjar SA, Shtarker H (2019) Effects of transcutaneous electrical nerve stimulation (TENS) on acute postoperative pain intensity and mobility after hip fracture: a double-blinded, randomized trial. Clin Interv Aging 14:1841–1850

    Article  PubMed  PubMed Central  Google Scholar 

  • Engelhardt L, Grosse J, Birnbaum J, Volk T (2007) Inhibition of a pacemaker during nerve stimulation for regional anaesthesia. Anaesthesia 62(10):1071–1074

    Article  CAS  PubMed  Google Scholar 

  • Enzelsberger H, Skodler WD, Kubista E (1991) Zur Verbesserung der Doppler-Sonographiebefunde nach transkutaner Elektrostimulation bei Frauen mit Plazentainsuffizienz [Improvement of Doppler ultrasonography findings following transcutaneous electrostimulation in women with placental insufficiency]. Z Geburtshilfe Perinatol 195(4):172–175

    CAS  PubMed  Google Scholar 

  • Eslamian F, Farhoudi M, Jahanjoo F, Sadeghi-Hokmabadi E, Darabi P (2020) Electrical interferential current stimulation versus electrical acupuncture in management of hemiplegic shoulder pain and disability following ischemic stroke-a randomized clinical trial. Arch Physiother 10;10:2

    Google Scholar 

  • Eriksson M, Sjölund B (1976) Acupuncture-like electroanalgesia in TNS resistant chronic pain. In: Zotterman Y (Hrsg) Sensory functions of the skin. Pergamon Press, Oxford/New York, S 575–581

    Chapter  Google Scholar 

  • Facci LM, Nowotny JP, Tormem F, Trevisani VF (2011) Interferential currents (IFC) in patients with nonspecific chronic low back pain: randomized clinical trial. Sao Paulo Med J 129(4):206–216

    Google Scholar 

  • Ferreira RM, Duarte JA, Gonçalves RS (2018) Non-pharmacological and non-surgical interventions to manage patients with knee osteoarthritis: an umbrella review. Acta Reumatol Port 43(3):182–200

    PubMed  Google Scholar 

  • Ferreira RM, Torres RT, Duarte JA, Gonçalves RS (2019) Non-pharmacological and non-surgical interventions for knee osteoarthritis: a systematic review and meta-analysis. Acta Reumatol Port 44(3):173–217

    PubMed  Google Scholar 

  • Ford KS, Shrader MW, Smith J, McLean TJ, Dahm DL (2005) Full-thickness burn formation after the use of electrical stimulation for rehabilitation of unicompartmental knee arthroplasty. J Arthroplast 20(7):950–953

    Article  Google Scholar 

  • Foulds IS, Barker A (1983) Human skin battery potentials and their possible role in wound healing. Br J Dermatol 109(5):515–522

    Article  CAS  PubMed  Google Scholar 

  • Francis RP, Marchant P, Johnson MI (2011a) Conventional versus acupuncture-like transcutaneous electrical nerve stimulation on cold-induced pain in healthy human participants: effects during stimulation. Clin Physiol Funct Imaging 31(5):363–370

    Article  PubMed  Google Scholar 

  • Francis RP, Marchant PR, Johnson MI (2011b) Comparison of post-treatment effects of conventional and acupuncture-like transcutaneous electrical nerve stimulation (TENS): a randomised placebo-controlled study using cold-induced pain and healthy human participants. Physiother Theor Pract 27(8):578–585

    Article  Google Scholar 

  • Franco YR, Franco KF, Silva LA, Silva MO, Rodrigues MN, Liebano RE, Cabral CM (2018) Does the use of interferential current prior to pilates exercises accelerate improvement of chronic nonspecific low back pain? Pain Manag 1;8(6):465–474

    Google Scholar 

  • Fuentes CJ, Armijo-Olivo S, Magee DJ, Gross D (2010) Does amplitude-modulated frequency have a role in the hypoalgesic response of interferential current on pressure pain sensitivity in healthy subjects? A randomised crossover study. Physiotherapy 96(1):22–29

    Article  Google Scholar 

  • Galasso A, Urits I, An D et al (2020) A comprehensive review of the treatment and management of myofascial pain syndrome. Curr Pain Headache Rep 24(8):43

    Article  PubMed  Google Scholar 

  • Gardner SE, Blodgett NP, Hillis SL, Borhart E, Malloy L, Abbott L, Pezzella P, Jensen M, Sommer T, Sluka KA, Rakel BA (2014) HI-TENS reduces moderate-to-severe pain associated with most wound care procedures: a pilot study. Biol Res Nurs 16(3):310–319

    Article  PubMed  Google Scholar 

  • Gemmell H, Hilland A (2011) Immediate effect of electric point stimulation (TENS) in treating latent upper trapezius trigger points: a double blind randomised placebo-controlled trial. J Bodyw Mov Ther 15(3):348–354

    Article  PubMed  Google Scholar 

  • George SZ, Dannecker EA, Robinson ME (2006) Fear of pain, not pain catastrophizing, predicts acute pain intensity, but neither factor predicts tolerance or blood pressure reactivity: an experimental investigation in pain-free individuals. Eur J Pain 10(5):457–465

    Article  PubMed  Google Scholar 

  • Gildemeister M (1944) Untersuchungen über die Wirkung der Mittelfrequenzströme auf den Menschen. Pflugers Arch 247:366–404

    Article  Google Scholar 

  • Giuffrida O, Simpson L, Halligan PW (2010) Contralateral stimulation, using TENS, of phantom limb pain: two confirmatory cases. Pain Med 11(1):133–141

    Article  PubMed  Google Scholar 

  • Gomes CAFP, Dibai-Filho AV, Moreira WA, Rivas SQ, Silva EDS, Garrido ACB (2018) Effect of Adding Interferential Current in an Exercise and Manual Therapy Program for Patients With Unilateral Shoulder Impingement Syndrome: A Randomized Clinical Trial. J Manipulative Physiol Ther 41(3):218–226

    Google Scholar 

  • Gossrau G, Wähner M, Kuschke M et al (2011) Microcurrent transcutaneous electric nerve stimulation in painful diabetic neuropathy: a randomized placebo-controlled study. Pain Med 12(6):953–960

    Article  PubMed  Google Scholar 

  • Gülmezoglu AM, Hofmeyr GJ (2000) Transcutaneous electrostimulation for suspected placental insufficiency (diagnosed by Doppler studies). Cochrane Database Syst Rev 1996(2):CD000079

    PubMed  Google Scholar 

  • Hamza MA, White PF, Ahmed HE, Ghoname EA (1999) Effect of the frequency of transcutaneous electrical nerve stimulation on the postoperative opioid analgesic requirement and recovery profile. Anesthesiology 91(5):1232–1238

    Article  CAS  PubMed  Google Scholar 

  • Han JS, Chen XH, Sun SL, Xu XJ, Yuan Y, Yan SC, Hao JX, Terenius L (1991) Effect of low- and high-frequency TENS on Met-enkephalin-Arg-Phe and dynorphin A immunoreactivity in human lumbar CSF. Pain 47(3):295–298

    Article  CAS  PubMed  Google Scholar 

  • Han JS (2003) Acupuncture: neuropeptide release produced by electrical stimulation of different frequencies. Trends Neurosci 26(1):17–22

    Google Scholar 

  • Heath ME, Gibbs SB (1992) High-voltage pulsed galvanic stimulation: effects of frequency of current on blood flow in the human calf muscle. Clin Sci (Lond) 82(6):607–613

    Article  CAS  PubMed  Google Scholar 

  • Herbert R, Jamtvedt G, Hagen KB, Mead J (2011) Practical evidence-based physiotherapy, 2. Aufl. Churchill Livingstone, ISBN: 9780702054501

    Google Scholar 

  • Hettrick HH, O’Brien K, Laznick H et al (2004) Effect of transcutaneous electrical nerve stimulation for the management of burn pruritus: a pilot study. J Burn Care Rehabil 25(3):236–240

    Article  PubMed  Google Scholar 

  • Hingne PM, Sluka KA (2007) Differences in waveform characteristics have no effect on the anti-hyperalgesia produced by Transcutaneous Electrical Nerve Stimulation (TENS) in rats with joint inflammation. J Pain 8(3):251–255

    Article  PubMed  Google Scholar 

  • Hoare JI, Rajnicek AM, McCaig CD, Barker RN, Wilson HM (2016) Electric fields are novel determinants of human macrophage functions. J Leukoc Biol 99(6):1141–1151

    Article  CAS  PubMed  Google Scholar 

  • Hofmann SG (2008) Cognitive processes during fear acquisition and extinction in animals and humans: implications for exposure therapy of anxiety disorders. Clin Psychol Rev 28(2):199–210

    Article  PubMed  Google Scholar 

  • Holmgren C, Carlsson T, Mannheimer C, Edvardsson N (2008) Risk of interference from transcutaneous electrical nerve stimulation on the sensing function of implantable defibrillators. Pacing Clin Electrophysiol 31(2):151–158

    Google Scholar 

  • Hong CZ (2000) Myofascial trigger points. Pathophysiology and correlation with acupuncture points. Acupunct Med 18:41–47

    Article  Google Scholar 

  • Houghton PE, Kincaid CB, Lovell M, Campbell KE, Keast DH, Woodbury MG, Harris KA (2003) Effect of electrical stimulation on chronic leg ulcer size and appearance. Phys Ther 83(1):17–28

    Google Scholar 

  • Houghton PE (2014) Clinical trials involving biphasic pulsed current, MicroCurrent, and/or low-intensity direct current. Adv Wound Care (New Rochelle) 3(2):166–183

    Article  PubMed  Google Scholar 

  • Houghton PE (2017) Electrical stimulation therapy to promote healing of chronic wounds: a review of reviews. Chronic Wound Care Manag Res 4:25–44

    Article  Google Scholar 

  • Houghton PE, Nussbaum EL, Hoens AM (2010) Electrophysical agents. Contraindications and precautions: an evidence-based approach to clinical decision making in physical therapy. Physiotherapy 62(5) Special Issue ISSN-0300-0508 E-ISSN-1708-8313

    Google Scholar 

  • Hughes GS Jr, Lichstein PR, Whitlock D, Harker C (1984) Response of plasma beta-endorphins to transcutaneous electrical nerve stimulation in healthy subjects. Phys Ther 64(7):1062–1066

    Google Scholar 

  • Hugosdottir R, Mørch CD, Andersen OK, Helgason T, Arendt-Nielsen L (2019) Preferential activation of small cutaneous fibers through small pin electrode also depends on the shape of a long duration electrical current. BMC Neurosci 20:48

    Article  PubMed  PubMed Central  Google Scholar 

  • Hui KKS, Nixon EE, Vangel MG, Liu J, Marina O, Napadow V, Hodge SM, Rosen BR, Makris N, Kennedy DN (2007) Characterization of the “deqi” response in acupuncture. BMC Complement Altern Med 7:33

    Article  PubMed  PubMed Central  Google Scholar 

  • Hunckler J, de Mel A (2017) A current affair: electrotherapy in wound healing. J Multidiscip Healthc 10:179–194

    Article  PubMed  PubMed Central  Google Scholar 

  • Ibrahim ZM, Waked IS, Ibrahim O (2019) Negative pressure wound therapy versus microcurrent electrical stimulation in wound healing in burns. J Wound Care 28(4):214–219

    Article  PubMed  Google Scholar 

  • Ignelzi RJ, Nyquist JK (1976) Direct effect of electrical stimulation on peripheral nerve evoked activity: implications in pain relief. J Neurosurg 45(2):159–165

    Article  CAS  PubMed  Google Scholar 

  • Ignelzi RJ, Nyquist JK (1979) Excitability changes in peripheral nerve fibres after repetitive electrical stimulation. Implications in pain modulation. J Neurosurg 51:824–833

    Article  CAS  PubMed  Google Scholar 

  • Iijima H, Takahashi M, Tashiro Y, Aoyama T (2018) Comparison of the effects of kilohertz- and low-frequency electric stimulations: A systematic review with meta-analysis. PLoS One 24;13(4):e0195236

    Google Scholar 

  • Janko M, Trontelj JV (1980) Transcutaneous electrical nerve stimulation: a microneurographic and perceptual study. Pain 9(2):219–230

    Article  PubMed  Google Scholar 

  • Jin DM, Xu Y, Geng DF, Yan TB (2010) Effect of transcutaneous electrical nerve stimulation on symptomatic diabetic peripheral neuropathy: a meta-analysis of randomized controlled trials. Diabetes Res Clin Pract 89(1):10–15

    Article  PubMed  Google Scholar 

  • Johnson MI (1999) The mystique of interferential currents when used to manage pain. Physiotherapy 85(6):294–297

    Article  Google Scholar 

  • Johnson MI (2014) Transcutaneous Electrical Nerve Stimulation (TENS). Research to support clinical practice. Oxford University Press, ISBN-13: 978-0199673278

    Book  Google Scholar 

  • Johnson MI (2017) Transcutaneous electrical nerve stimulation (TENS) as an adjunct for pain management in perioperative settings: a critical review. Expert Rev Neurother 17(10):1013–1027

    Article  CAS  PubMed  Google Scholar 

  • Johnson MI, Tabasam G (2003a) A single-blind investigation into the hypoalgesic effects of different swing patterns of interferential currents on cold-induced pain in healthy volunteers. Arch Phys Med Rehabil 84(3):350–357

    Article  PubMed  Google Scholar 

  • Johnson MI, Tabasam G (2003b) An investigation into the analgesic effects of different frequencies of the amplitude-modulated wave of interferential current therapy on cold-induced pain in normal subjects. Arch Phys Med Rehabil 84(9):1387–1394

    Article  PubMed  Google Scholar 

  • Johnson MI, Ashton CH, Thompson JW (1991) An in-depth study of long-term users of transcutaneous electrical nerve stimulation (TENS). Implications for clinical use of TENS. Pain 44:221–229

    Article  CAS  PubMed  Google Scholar 

  • Johnson MI, Penny P, Sajawal MA (1997) An examination of the analgesic effects of microcurrent electrical stimulation (MES) on cold-induced pain in healthy subjects. Physiother Theor Pract 13:293–301

    Article  Google Scholar 

  • Julka IS, Alvaro M, Kumar D (1998) Beneficial effects of electrical stimulation on neuropathic symptoms in diabetes patients. J Foot Ankle Surg 37(3):191–194

    Article  CAS  PubMed  Google Scholar 

  • Kaada B (1982) Vasodilation induced by transcutaneous stimulation in peripheral ischemia (Raynaud’s phenomenon and diabetic polyneuropathy). Eur Heart J 3(4):303–314

    Article  CAS  PubMed  Google Scholar 

  • Kaada B, Eielsen O (1983) In search of mediators of skin vasodilation induced by transcutaneous nerve stimulation: II. Serotonin implicated. Gen Pharmacol 14(6):635–641

    Article  CAS  PubMed  Google Scholar 

  • Kaada B, Melesse W (1988) Promoted healing of leprous ulcers by transcutaneous nerve stimulation. Acup Elec-Ther Res 13(4):165–176

    CAS  Google Scholar 

  • Kaada B, Hognestad S, Havstad J (1989) Transcutaneous nerve stimulation (TNS) in tinnitus. Scand Audiol 18(4):211–217

    Article  CAS  PubMed  Google Scholar 

  • Kalra A, Urban MO, Sluka KA (2001) Blockade of opioid receptors in rostral ventral medulla prevents antihyperalgesia produced by transcutaneous electrical nerve stimulation (TENS). J Pharmacol Exp Ther 298:257–263

    CAS  PubMed  Google Scholar 

  • Katz J, Melzack R (1990) Pain ‘memories’ in phantom limbs: review and clinical observations. Pain 43(3):319–336

    Article  PubMed  Google Scholar 

  • Katz J, France C, Melzack R (1989) An association between phantom limb sensations and stump skin conductance during transcutaneous electrical nerve stimulation (TENS) applied to the contralateral leg: a case study. Pain 36(3):367–377

    Article  PubMed  Google Scholar 

  • Kawamura H, Ito K, Yamamoto M, Yamamoto H, Ishida K, Kawakami T, Tani T, Kaho K, Masaki Y (1997) The transcutaneous electrical nerve stimulation applied to contralateral limbs for the phantom limb pain. J Phys Ther Sci 9(2):71–76

    Article  Google Scholar 

  • Kayman-Kose S, Arioz DT, Toktas H, Koken G, Kanat-Pektas M, Kose M, Yilmazer M (2014) Transcutaneous electrical nerve stimulation (TENS) for pain control after vaginal delivery and cesarean section. J Matern Fetal Neonatal Med 27(15):1572–1575

    Article  CAS  PubMed  Google Scholar 

  • Khadilkar A, Odebiyi DO, Brosseau L, Wells GA (2008) Transcutaneous electrical nerve stimulation (TENS) versus placebo for chronic low-back pain. Cochrane Database Syst Rev 2008(4):CD003008

    PubMed  PubMed Central  Google Scholar 

  • Khouri C, Kotzki S, Roustit M, Blaise S, Gueyffier F, Cracowski JL (2017) Hierarchical evaluation of electrical stimulation protocols for chronic wound healing: an effect size meta-analysis. Wound Repair Regen 25(5):883–891

    Article  PubMed  Google Scholar 

  • Kilgore KL, Bhadra N (2004) Nerve conduction block utilising high-frequency alternating current. Med Biol Eng Comput 42(3):394–406

    Article  CAS  PubMed  Google Scholar 

  • Kim YR, Ahn SM, Pak ME et al (2018) Potential benefits of mesenchymal stem cells and electroacupuncture on the trophic factors associated with neurogenesis in mice with ischemic stroke. Sci Rep 8(1):2044

    Article  PubMed  PubMed Central  Google Scholar 

  • King EW, Audette K, Athman GA, Nguyen HO, Sluka KA, Fairbanks CA (2005) Transcutaneous electrical nerve stimulation activates peripherally located alpha-2A adrenergic receptors. Pain 115(3):364–373

    Article  CAS  PubMed  Google Scholar 

  • Kordestani SS (2019) Atlas of wound healing. A tissue regeneration approach, 1. Aufl. Elzevier, ISBN: 9780323679688

    Google Scholar 

  • Kowarschik J (1957) Physikalische Therapie. 2. Auflage Wien Springer Verlag

    Google Scholar 

  • Kubista E, Skodler W, Pateisky N, Heytmanek G (1987) Sonographischer Nachweis der Durchblutungssteigerung bei Plazentainsuffizienz nach TNS-Therapie mit Hilfe des gepulsten Doppler-Ultraschalls [Sonographic detection of increased perfusion in placental insufficiency following TNS therapy using pulsed Doppler ultrasound]. Geburtshilfe Frauenheilkd 47(9):594–596

    Article  CAS  PubMed  Google Scholar 

  • Kumar D, Marshall HJ (1997) Diabetic peripheral neuropathy: amelioration of pain with transcutaneous electrostimulation. Diabetes Care 20(11):1702–1705

    Google Scholar 

  • Lambert H, De Bisschop F, De Mey G, De Cuyper H, Demurie S, Vanderstraeten G, Blondé W (1989) Electric current distribution in tissues upon electrotherapy. Acta Belg Med Phys 12(2):31–40

    Google Scholar 

  • Lambert MI, Marcus P, Burgess T, Noakes TD (2002) Electro-membrane microcurrent therapy reduces signs and symptoms of muscle damage. Med Sci Sports Exerc 34:602–607

    PubMed  Google Scholar 

  • Lang PM, Stoer J, Schober GM, Audette JF, Irnich D (2010) Bilateral acupuncture analgesia observed by quantitative sensory testing in healthy volunteers. Anesth Analg 110(5):1448–1456

    Article  CAS  PubMed  Google Scholar 

  • Larsen B, Macher F, Bolte M, Larsen R (1995) Blockade des Ganglion stellatum mit transkutaner elektrischer Nervenstimulation (TENS): Eine Doppelblindstudie an gesunden Probanden [Stellate ganglion block with transcutaneous electric nerve stimulation (TENS): a double-blind study with healthy probands]. Anasthesiol Intensivmed Notfallmed Schmerzther 30(3):155–162

    Article  CAS  PubMed  Google Scholar 

  • Laufer Y, Elboim M (2008) Effect of burst frequency and duration of kilohertz-frequency alternating currents and of low-frequency pulsed currents on strength of contraction, muscle fatigue, and perceived discomfort. Phys Ther 88(10):1167–1176

    Article  PubMed  Google Scholar 

  • Laufer Y, Ries JD, Leininger PM, Alon G (2001) Quadriceps femoris muscle torques and fatigue generated by neuromuscular electrical stimulation with three different waveforms. Phys Ther 81(7):1307–1316

    Article  CAS  PubMed  Google Scholar 

  • Lauretti GR, Chubaci EF, Mattos AL (2013) Efficacy of the use of two simultaneously TENS devices for fibromyalgia pain. Rheumatol Int 33(8):2117–2122

    Article  CAS  PubMed  Google Scholar 

  • Lazarou L, Kitsios A, Lazarou I, Sikaras E, Trampas A (2009) Effects of intensity of Transcutaneous Electrical Nerve Stimulation (TENS) on pressure pain threshold and blood pressure in healthy humans: a randomized, double-blind, placebo-controlled trial. Clin J Pain 25(9):773–780

    Article  PubMed  Google Scholar 

  • Le Bars D (2002) The whole body receptive field of dorsal horn multireceptive neurones. Brain Res Brain Res Rev 40(1–3):29–44

    Article  PubMed  Google Scholar 

  • Le Bars D, Willer JC (2002) Pain modulation triggered by high-intensity stimulation: implication for acupuncture analgesia? Int Congr Ser 1238:11–29. https://doi.org/10.1016/S0531-5131(02)00412-0

    Article  Google Scholar 

  • Lee KH, Chung JM, Willis WD Jr (1985) Inhibition of primate spinothalamic tract cells by TENS. J Neurosurg 62(2):276–287

    Article  CAS  PubMed  Google Scholar 

  • Lee JE, Watson D, Frey-Law LA (2013) Psychological factors predict local and referred experimental muscle pain: a cluster analysis in healthy adults. Eur J Pain 17(6):903–915

    Article  CAS  PubMed  Google Scholar 

  • Léonard G, Goffaux P, Marchand S (2010) Deciphering the role of endogenous opioids in high-frequency TENS using low and high doses of Naloxone. Pain 151(1):215–219

    Article  PubMed  Google Scholar 

  • Léonard G, Cloutier C, Marchand S (2011) Reduced analgesic effect of acupuncture-like TENS but not conventional TENS in opioid-treated patients. J Pain 12(2):213–221

    Article  PubMed  Google Scholar 

  • Li CL, Bak A (1976) Excitability characteristics of the A- and C-fibers in a peripheral nerve. Experimental Neurology 50(1):67–79

    Google Scholar 

  • Li L, Gu W, Du J et al (2012) Electric fields guide migration of epidermal stem cells and promote skin wound healing. Wound Repair Regen 20(6):840–851

    Article  PubMed  Google Scholar 

  • Liao CD, Tsauo JY, Liou TH, Chen HC, Rau CL (2016) Efficacy of noninvasive stellate ganglion blockade performed using physical agent modalities in patients with sympathetic hyperactivity-associated disorders: a systematic review and meta-analysis. PLoS One 11(12):e0167476

    Article  PubMed  PubMed Central  Google Scholar 

  • Liebano RE, Abla LE, Ferreira LM (2008) Effect of low-frequency transcutaneous electrical nerve stimulation (TENS) on the viability of ischemic skin flaps in the rat: an amplitude study. Wound Repair Regen 16(1):65–69

    Article  PubMed  Google Scholar 

  • Liebano RE, Rakel B, Vance CGT, Walsh DM, Sluka KA (2011) An investigation of the development of analgesic tolerance to TENS in humans. Pain 152(2):335–342

    Article  PubMed  Google Scholar 

  • Lullies H, Trincker D (1974) Taschenbuch der Physiologie. Band 3/1. Gustav Fischer Verlag, Stuttgart, ISBN: 3437001213 / 3-437-00121-3

    Google Scholar 

  • Lundeberg T, Kjartansson J, Samuelsson U (1988) Effect of electrical nerve stimulation on healing of ischemic skin flaps. Lancet 2:712–714

    Article  CAS  PubMed  Google Scholar 

  • Lundeberg TC, Eriksson SV, Malm M (1992) Electrical nerve stimulation improves healing of diabetic ulcers. Ann Plast Surg 29(4):328–331

    Article  CAS  PubMed  Google Scholar 

  • Lykken DT, Venables PH (1971) Direct measurement of skin conductance: a proposal for standardization. Psychophysiology 8(5):656–672

    Google Scholar 

  • Mackenzie RA, Burke D, Skuse NF, Lethlean AK (1975) Fibre function and perception during cutaneous nerve block. J Neurol Neurosurg Psychiatry 38(9):865–873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maeda Y, Lisi TL, Vance CG, Sluka KA (2007) Release of GABA and activation of GABA(A) in the spinal cord mediates the effects of TENS in rats. Brain Res 1136(1):43–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahure SA, Rokito AS, Kwon YW (2017) Transcutaneous electrical nerve stimulation for postoperative pain relief after arthroscopic rotator cuff repair: a prospective double-blinded randomized trial. J Shoulder Elb Surg 26(9):1508–1513

    Article  Google Scholar 

  • Marchand S, Charest J, Li J, Chenard JR, Lavignolle B, Laurencelle L (1993) Is TENS purely a placebo effect? A controlled study on chronic low back pain. Pain 54(1):99–106

    Article  PubMed  Google Scholar 

  • Marchand S, Li J, Charest J (1995) Effects of caffeine on analgesia from transcutaneous electrical nerve stimulation. N Engl J Med 333(5):325–326

    Article  CAS  PubMed  Google Scholar 

  • Martínez-Rodríguez A, Bello O, Fraiz M, Martinez-Bustelo S (2013) The effect of alternating and biphasic currents on humans’ wound healing: a literature review. Int J Dermatol 52(9):1053–1062

    Article  PubMed  Google Scholar 

  • Melzack R (1975) Prolonged relief of pain by brief intense transcuaneous somatic stimulation. Pain 1:357–373

    Article  PubMed  Google Scholar 

  • Melzack R (1981) Myofascial triggerpoints. Relation to acupuncture and mechanism of pain. Arch Phys Med Rehabil 62:114–117

    CAS  PubMed  Google Scholar 

  • Melzack R, Stillwell D, Fox EJ (1977) Triggerpoints and acupuncturepoints for pain. Correlations and implications. Pain 3:3–23

    Article  PubMed  Google Scholar 

  • Michlovitz SL, Smith W, Watkins M (1988) Ice and high voltage pulsed stimulation in treatment of acute lateral ankle sprains. J Orthop Sports Phys Ther 9(9):301–304

    Article  CAS  PubMed  Google Scholar 

  • Minder PM, Noble JG, Alves-Guerreiro J, Hill ID, Lowe AS, Walsh DM, Baxter GD (2002) Interferential therapy: lack of effect upon experimentally induced delayed onset muscle soreness.Clin. Physiol Funct Imaging 22(5):339–347

    Article  CAS  Google Scholar 

  • Moran F, Leonard T, Hawthorne S, Hughes CM, McCrum-Gardner E, Johnson MI, Rakel BA, Sluka KA, Walsh DM (2011) Hypoalgesia in response to Transcutaneous Electrical Nerve Stimulation (TENS) depends on stimulation intensity. J Pain 12(8):929–935

    Article  PubMed  Google Scholar 

  • Nägele H, Azizi M (2006) Inappropriate ICD discharge induced by electrical interference from a physio-therapeutic muscle stimulation device. Herzschrittmacherther Elektrophysiol 17(3):137–139

    Google Scholar 

  • Namer B, Barta B, Ørstavik K, Schmidt R, Carr R, Schmelz M, Handwerker HO (2009) Microneurographic assessment of C-fibre function in aged healthy subjects. J Physiol 587(2):419–428

    Article  CAS  PubMed  Google Scholar 

  • Nardone A, Schieppati M (1989) Influences of transcutaneous electrical stimulation of cutaneous and mixed nerves on subcortical and cortical somatosensory evoked potentials. Electroencephalogr Clin Neurophysiol 74(1):24–35

    Article  CAS  PubMed  Google Scholar 

  • Nazligul T, Akpinar P, Aktas I, Unlu Ozkan F, Cagliyan Hartevioglu H (2018) The effect of interferential current therapy on patients with subacromial impingement syndrome: a randomized, double-blind, sham-controlled study. Eur J Phys Rehabil Med 54(3):351–357

    Google Scholar 

  • Nemec H (1959) Interferential therapy: a new approach in physical medicine. Br J Physiother 12:9–12

    Google Scholar 

  • Nemec H (1960) Reizstromtherapie mit Interferenzströmen. Dtsch Badebetrieb 12:320–322

    Google Scholar 

  • Nemec H (1967) Endogene Elektrostimulierung durch mittelfrequente und Interferenzströme. Rehabilitation (Bonn) 20:1–11

    CAS  PubMed  Google Scholar 

  • Nemec H (1968) Elektrostimulierung in endogener Anwendung: Aktionsmechanismus der Interferenztherapie. Physikalische Medizin und Rehabilitation 9:73–75

    Google Scholar 

  • Noble JG, Henderson G, Cramp AF, Walsh DM, Lowe AS (2000) The effect of interferential therapy upon cutaneous blood flow in humans. Clin Physiol 20(1):2–7

    Article  CAS  PubMed  Google Scholar 

  • Occhetta E, Bortnik M, Magnani A, Francalacci G, Marino P (2006) Inappropriate implantable cardioverter-defibrillator discharges unrelated to supraventricular tachyarrhythmias. Europace 8(10):863–869

    Google Scholar 

  • Ould Amer Y, Hebert-Chatelain E (2018) Mitochondrial cAMP-PKA signaling: what do we really know? Biochim Biophys Acta Bioenerg 1859(9):868–877

    Article  CAS  PubMed  Google Scholar 

  • Palmer ST, Martin DJ, Steedman WM, Ravey J (1999) Alteration of interferential current and transcutaneous electrical nerve stimulation frequency: effects on nerve excitation. Arch Phys Med Rehabil 80(9):1065–1071

    Article  CAS  PubMed  Google Scholar 

  • Pantaleão MA, Laurino MF, Gallego NLG, Cabral CMN, Rakel B, Vance C, Sluka KA, Walsh DM, Liebano RE (2011) Adjusting pulse amplitude during Transcutaneous Electrical Nerve Stimulation (TENS) application produces greater hypoalgesia. J Pain 12(5):581–590

    Article  PubMed  Google Scholar 

  • Phillipp A, Wolf GK, Rzany B, Dertinger H, Jung EG (2000) Interferential current is effective in palmar psoriasis:an open prospective trial. Eur J Dermatol 10:195–198

    Google Scholar 

  • Polak A, Taradaj J, Nawrat-Szoltysik A et al (2016) Reduction of pressure ulcer size with high-voltage pulsed current and high-frequency ultrasound: a randomised trial. J Wound Care 25(12):742–754

    Article  CAS  PubMed  Google Scholar 

  • Poltawski L, Johnson M, Watson T (2012) Microcurrent therapy in the management of chronic tennis elbow: pilot studies to optimize parameters. Physiother Res Int 17(3):157–166. https://doi.org/10.1002/pri.526

    Article  PubMed  Google Scholar 

  • Pyatt JR, Trenbath D, Chester M, Connelly DT (2003) The simultaneous use of a biventricular implantable cardioverter defibrillator (ICD) and transcutaneous electrical nerve stimulation (TENS) unit: implications for device interaction. Europace 5(1):91–93

    Google Scholar 

  • Radhakrishnan R, Sluka KA (2003) Spinal muscarinic receptors are activated during low or high frequency TENS-induced antihyperalgesia in rats. Neuropharmacology 45(8):1111–1119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Radhakrishnan R, Sluka KA (2005) Deep tissue afferents, but not cutaneous afferents, mediate transcutaneous electrical nerve stimulation-Induced antihyperalgesia. J Pain 6(10):673–680

    Article  PubMed  Google Scholar 

  • Rajpurohit B, Khatri SM, Metgud D, Bagewadi A (2010) Effectiveness of transcutaneous electrical nerve stimulation and microcurrent electrical nerve stimulation in bruxism associated with masticatory muscle pain – a comparative study. Indian J Dent Res 21(1):104–106

    Article  PubMed  Google Scholar 

  • Rakel B, Frantz R (2003) Effectiveness of transcutaneous electrical nerve stimulation on postoperative pain with movement. J Pain 4(8):455–464

    Article  PubMed  Google Scholar 

  • Rakel BA, Zimmerman MB, Geasland K, Embree J, Clark CR, Noiseux NO, Callaghan JJ, Herr K, Walsh D, Sluka KA (2014) Transcutaneous electrical nerve stimulation for the control of pain during rehabilitation after total knee arthroplasty: a randomized, blinded, placebo-controlled trial. Pain 155(12):2599–2611

    Article  PubMed  PubMed Central  Google Scholar 

  • Ranker A, Husemeyer O, Cabeza-Boeddinghaus N, Mayer-Wagner S, Crispin A, Weigl MB (2020) Microcurrent therapy in the treatment of knee osteoarthritis. Could it be more than a placebo-effect? A randomized controlled trial. Eur J Phys Rehabil Med. https://doi.org/10.23736/S1973-9087.20.05921-3

  • Resende L, Merriwether E, Rampazo ÉP et al (2018) Meta-analysis of transcutaneous electrical nerve stimulation for relief of spinal pain. Eur J Pain 22(4):663–678

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez-Fernández AL, Garrido-Santofimia V, Güeita-Rodríguez J, Fernández-de-Las-Peñas C (2011) Effects of burst-type transcutaneous electrical nerve stimulation on cervical range of motion and latent myofascial trigger point pain sensitivity. Arch Phys Med Rehabil 92(9):1353–1358

    Google Scholar 

  • Roman N (2017) Physiotherapy devices able to generate ethical dilemma. MATEC Web Conf 112:08001. https://doi.org/10.1051/matecconf/201711208001

    Article  Google Scholar 

  • Rouabhia M, Park HJ, Zhang Z (2016) Electrically activated primary human fibroblasts improve in vitro and in vivo skin regeneration. J Cell Physiol 231(8):1814–1821

    Article  CAS  PubMed  Google Scholar 

  • Sabino GS, Santos CM, Francischi JN, de Resende MA (2008) Release of endogenous opioids following transcutaneous electric nerve stimulation in an experimental model of acute inflammatory pain. J Pain 9(2):157–163

    Article  CAS  Google Scholar 

  • Sachverständigenrat für die Konzertierte Aktion im Gesundheitswesen. http://dipbt.bundestag.de/doc/btd/14/068/1406871.pdf

  • Salar G, Job I, Mingrino S, Bosio A, Trabucchi M (1981) Effect of transcutaneous electrotherapy on CSF β-endorphin content in patients without pain problems. Pain 10:169–172

    Article  PubMed  Google Scholar 

  • Salter MW, Henry JL (1987) Evidence that adenosine mediates the depression of spinal dorsal horn neurons induced by peripheral vibration in the cat. Neuroscience 22(2):631–650

    Article  CAS  PubMed  Google Scholar 

  • Salter MW, De Koninck Y, Henry JL (1993) Physiological roles for adenosine and ATP in synaptic transmission in the spinal dorsal horn. Prog Neurobiol 41(2):125–156

    Article  CAS  PubMed  Google Scholar 

  • Sandoval MC, Ramirez C, Camargo DM, Salvini TF (2010) Effect of high-voltage pulsed current plus conventional treatment on acute ankle sprain. Rev Bras Fis 14(3):193–199

    Article  Google Scholar 

  • Sarlandière JB (1825) Memoires sur l’electro-puncture, consideré comme moyen nouveau de traiter efficacement la goute, les rhumatismes et les affections nerveuses. (Paris). https://gallica.bnf.fr/ark:/12148/bpt6k5832681w/f4.image.texteImage

  • Satter EK (2008) Third-degree burns incurred as a result of interferential current therapy. Am J Dermatopathol 30(3):281–283

    Article  PubMed  Google Scholar 

  • Scott W, Adams C, Cyr S, Hanscom B, Hill K, Lawson J, Ziegenbein C (2015) Electrically Elicited Muscle Torque: Comparison Between 2500-Hz Burst-Modulated Alternating Current and Monophasic Pulsed Current. J Orthop Sports Phys Ther 45(12):1035–1041

    Google Scholar 

  • Serezani CH, Ballinger MN, Aronoff DM, Peters-Golden M (2008) Cyclic AMP: master regulator of innate immune cell function. Am J Respir Cell Mol Biol 39(2):127–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shanahan C, Ward AR, Robertson VJ (2006) Comparison of the analgetic efficacy of interferential therapy and transcutaneous electrical nerve stimulation. Physiotherapy 92:247–253

    Article  Google Scholar 

  • Shahrokhi A, Ghorbani A, Aminianfar A (2014) Impact of interferential current on recovery of pressure ulcers grade 1 and 2. Iran J Nurs Midwifery Res 19(7 Suppl 1):S91–6

    Google Scholar 

  • Shimizu T, Koja T, Fujisaki T, Fukuda T (1981) Effects of methysergide and naloxone on analgesia induced by the peripheral electric stimulation in mice. Brain Res 208(2):463–467

    Article  CAS  PubMed  Google Scholar 

  • Silva AJ, Kogan JH, Frankland PW, Kida S (1998) CREB and memory. Annu Rev Neurosci 21:127–148

    Article  CAS  PubMed  Google Scholar 

  • da Silva TM, Costa Lda C, Garcia AN, Costa LO (2015) What do physical therapists think about evidence-based practice? A systematic review. Man Ther 20(3):388–401

    Article  PubMed  Google Scholar 

  • Simon CB, Riley JL 3rd, Fillingim RB, Bishop MD, George SZ (2015) Age group comparisons of TENS response among individuals with chronic axial low back pain. J Pain 16(12):1268–1279

    Article  PubMed  PubMed Central  Google Scholar 

  • Sivaramakrishnan A, Solomon JM, Manikandan N (2018) Comparison of transcutaneous electrical nerve stimulation (TENS) and functional electrical stimulation (FES) for spasticity in spinal cord injury – a pilot randomized cross-over trial. J Spinal Cord Med 41(4):397–406

    Article  PubMed  Google Scholar 

  • Sjölund BH (1985) Peripheral nerve stimulation suppression of C-fiber-evoked flexion reflex in rats. Part 1: parameters of continuous stimulation. J Neurosurg 63(4):612–616

    Article  PubMed  Google Scholar 

  • Sjölund BH (1988) Peripheral nerve stimulation suppression of C-fiber-evoked flexion reflex in rats. Part 2: parameters of low-rate train stimulation of skin and muscle afferent nerves. J Neurosurg 68(2):279–283

    Article  PubMed  Google Scholar 

  • Sjölund BH, Eriksson MB (1979) The influence of Naloxone on analgesia by peripheral conditioning stimulation. Brain Res 173:295–301

    Article  PubMed  Google Scholar 

  • Sjölund BH, Terenius L, Eriksson M (1977) Increased cerebrospinal fluid levels of endorphines after elektro-acupuncture. Acta Physiol Scand 100:382–384

    Article  PubMed  Google Scholar 

  • Sluka KA (1999) Spinal blockade of opioid receptors prevents the analgesia produced by TENS in arthritic rats. J Pharm Exper Ther 289:840–846

    CAS  Google Scholar 

  • Sluka KA, Walsh D (2003) Transcutaneous electrical nerve stimulation: basic science mechanisms and clinical effectiveness. J Pain 4(3):109–121

    Article  PubMed  Google Scholar 

  • Sluka KA, Deacon M, Stibal A, Strissel S, Terpstra A (1999) Spinal blockade of opioid receptors prevents the analgesia produced by TENS in arthritic rats. J Pharmacol Exp Ther 289(2):840–846

    CAS  PubMed  Google Scholar 

  • Sluka KA, Judge MA, McColley MM, Reveiz PM, Taylor BM (2000) Low frequency TENS is less effective than high frequency TENS at reducing inflammation-induced hyperalgesia in morphine-tolerant rats. Eur J Pain 4:185–194

    Article  CAS  PubMed  Google Scholar 

  • Sluka KA, Bjordal JM, Marchand S, Rakel BA (2013) What makes transcutaneous electrical nerve stimulation work? Making sense of the mixed results in the clinical literature. Phys Ther 93(10):1397–1402

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith GC, Pell JP (2003) Parachute use to prevent death and major trauma related to gravitational challenge: systematic review of randomised controlled trials. BMJ 327(7429):1459–1461

    Article  PubMed  PubMed Central  Google Scholar 

  • Somers DL, Clemente FR (2006) Transcutaneous electrical nerve stimulation for the management of neuropathic pain: the effects of frequency and electrode position on prevention of allodynia in a rat model of complex regional pain syndrome type II. Phys Ther 86(5):698–709

    Article  PubMed  Google Scholar 

  • Somers DL, Clemente FR (2009) Contralateral high or a combination of high- and low-frequency transcutaneous electrical nerve stimulation reduces mechanical allodynia and alters dorsal horn neurotransmitter content in neuropathic rats. J Pain 10(2):221–229

    Article  PubMed  Google Scholar 

  • Stefanovska A, Vodovnik L (1985) Change in muscle force following electrical stimulation. Dependence on stimulation waveform and frequency. Scand J Rehabil Med 17(3):141–146

    CAS  PubMed  Google Scholar 

  • Stralka SW, Jackson JA, Lewis AR (1998) Treatment of hand and wrist pain. A randomized clinical trial of high voltage pulsed, direct current built into a wrist splint. AAOHN J 46(5):233–236

    Article  CAS  PubMed  Google Scholar 

  • Stux G, Berman B, Pomeranz B (2003) Basics of acupuncture. 5th rev. ed. Springer Verlag, Berlin/Heidelberg, ISBN 3-540-44273

    Book  Google Scholar 

  • Sun S, Xu Q, Guo C, Guan Y, Liu Q, Dong X (2017) Leaky Gate Model: Intensity-Dependent Coding of Pain and Itch in the Spinal Cord. Neuron 93(4):840–853.e5.

    Google Scholar 

  • Suriya-amarit D, Gaogasigam C, Siriphorn A, Boonyong S (2014) Effect of interferential current stimulation in management of hemiplegic shoulder pain. Arch Phys Med Rehabil 95(8):1441–1446

    Google Scholar 

  • Taylor K, Newton RA, Personius WJ, Bush FM (1987) Effects of interferential current stimulation for treatment of subjects with recurrent jaw pain. Phys Ther 67(3):346–350

    Google Scholar 

  • Taylor AG, Anderson JG, Riedel SL, Lewis JE, Kinser PA, Bourguignon C (2013) Cranial electrical stimulation improves symptoms and functional status in individuals with fibromyalgia. Pain Manag Nurs 14(4):327–335

    Google Scholar 

  • Tong KC, Lo SK, Cheing GL (2007) Alternating frequencies of transcutaneous electric nerve stimulation: does it produce greater analgesic effects on mechanical and thermal pain thresholds? Arch Phys Med Rehabil 88(10):1344–1349

    Google Scholar 

  • Toroski M, Nikfar S, Mojahedian MM, Ayati MH (2018) Comparison of the cost-utility analysis of electroacupuncture and nonsteroidal antiinflammatory drugs in the treatment of chronic low back pain. J Acupunct Meridian Stud 11(2):62–66

    Article  PubMed  Google Scholar 

  • Travell J, Simons D (1992) Myofascial pain and dysfunction. The trigger point manual, Bd 1. Williams and Wilkins, ISBN 0-683-08366-X

    Google Scholar 

  • Travell J, Simons D (1992) Myofascial pain and dysfunction. The trigger point manual, Bd 2. Williams and Wilkins, ISBN 0-683-08367-8

    Google Scholar 

  • Treffene RJ (1983) Interferential fields in a fluid medium. Aust J Physiother. 29(6):209–216

    Google Scholar 

  • Vance CG, Rakel BA, Blodgett NP, DeSantana JM, Amendola A, Zimmerman MB, Walsh DM, Sluka KA (2012) Effects of transcutaneous electrical nerve stimulation on pain, pain sensitivity, and function in people with knee osteoarthritis: a randomized controlled trial. Phys Ther 92(7):898–910

    Article  PubMed  PubMed Central  Google Scholar 

  • Vance CG, Rakel BA, Dailey DL, Sluka KA (2015) Skin impedance is not a factor in transcutaneous electrical nerve stimulation effectiveness. J Pain Res 8:571–580

    Article  PubMed  PubMed Central  Google Scholar 

  • Vance CG, Chimenti RL, Dailey DL, Hadlandsmyth K, Zimmerman MB, Geasland KM, Williams JM, Merriwether EN, Munters LA, Rakel BA, Crofford LJ, Sluka KA (2018) Development of a method to maximize the transcutaneous electrical nerve stimulation intensity in women with fibromyalgia. J Pain Res 11:2269–2278

    Article  PubMed  PubMed Central  Google Scholar 

  • Vaz MA, Frasson VB (2018) Low-Frequency Pulsed Current Versus Kilohertz-Frequency Alternating Current: A Scoping Literature Review. Arch Phys Med Rehabil 99(4):792–805

    Google Scholar 

  • Veras M, Kairy D, Paquet N (2016) What is evidence-based physiotherapy? Physiother Can 68(2):95–98

    Article  PubMed  PubMed Central  Google Scholar 

  • Vlaeyen JW, Linton SJ (2012) Fear-avoidance model of chronic musculoskeletal pain: 12 years on. Pain 153(6):1144–1147

    Article  PubMed  Google Scholar 

  • Vlay SC (1998) Electromagnetic interference and ICD discharge related to chiropractic treatment. Pacing Clin Electrophysiol 21(10):2009

    Google Scholar 

  • Vrouva S, Batistaki C, Paraskevaidou E et al (2019) Comparative study of pain relief in two non-pharmacological treatments in patients with partial rotator cuff tears: a randomized trial. Anesth Pain Med 9(2):e88327

    PubMed  PubMed Central  Google Scholar 

  • Walsh DM, Lowe AS, McCormack K, Willer JC, Baxter GD, Allen JM (1998) Transcutaneous electrical nerve stimulation: effect on peripheral nerve conduction, mechanical pain threshold, and tactile threshold in humans. Arch Phys Med Rehabil 79(9):1051–1058

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Zhang Y, Wang W, Cao Y, Han JS (2005) Effects of synchronous or asynchronous electroacupuncture stimulation with low versus high frequency on spinal opioid release and tail flick nociception. Exp Neurol 192(1):156–162

    Article  CAS  PubMed  Google Scholar 

  • Ward AR (2009) Electrical stimulation using kilohertz-frequency alternating current. Phys Ther 89(2):181–190

    Article  PubMed  Google Scholar 

  • Ward AR, Oliver WG (2007) Comparison of the hypoalgesic efficacy of low-frequency and burst-modulated kilohertz frequency currents. Phys Ther 87(8):1056–1063

    Article  PubMed  Google Scholar 

  • Ward AR, Robertson VJ (1998) Sensory, motor, and pain thresholds for stimulation with medium frequency alternating current. Arch Phys Med Rehabil 79(3):273–278

    Article  CAS  PubMed  Google Scholar 

  • Ward AR, Robertson VJ (2000) The variation in fatigue rate with frequency using kHz frequency alternating current. Med Eng Phys 22(9):637–646

    Article  CAS  PubMed  Google Scholar 

  • Ward AR, Robertson VJ, Makowski RJ (2002) Optimal frequencies for electric stimulation using medium-frequency alternating current. Arch Phys Med Rehabil 83(7):1024–1027

    Article  PubMed  Google Scholar 

  • Ward AR, Robertson VJ, Ioannou H (2004) The effect of duty cycle and frequency on muscle torque production using kilohertz frequency range alternating current. Med Eng Phys 26(7):569–579

    Article  PubMed  Google Scholar 

  • Weber MI, Servedio FJ, Woodall WR (1994) The effects of three modalities on delayed onset muscle soreness. J Orthop Phys Ther 20:236–242

    Article  CAS  Google Scholar 

  • Weber-Muller F, Reichert-Penetrat S, Schmutz JL, Barbaud A (2004) Eczéma de contact aux polyacrylates du gel conducteur des électrodes de neurostimulation [Contact dermatitis from polyacrylate in TENS electrode]. Ann Dermatol Venereol. 131(5):478–480. French

    Google Scholar 

  • Wedensky NE (1903) Die Erregung, Hemmung und Narkose. Pflugers Arch 100:1–144

    Article  Google Scholar 

  • Weitz SH, Tunick PA, McElhinney L, Mitchell T, Kronzon I (1997) Pseudoatrial flutter: artifact simulating atrial flutter caused by a transcutaneous electrical nerve stimulator (TENS). Pacing Clin Electrophysiol 20(12 Pt 1):3010–3011

    Google Scholar 

  • Whitaker C (2001) The use of TENS for pruritus relief in the burns patient: an individual case report. J Burn Care Rehabil 22(4):274–276

    Article  CAS  PubMed  Google Scholar 

  • Wikström SO, Svedman P, Svensson H, Tanweer AS (1999) Effect of transcutaneous nerve stimulation on microcirculation in intact skin and blister wounds in healthy volunteers. Scand J Plast Reconstr Surg Hand Surg 33(2):195–201

    Article  PubMed  Google Scholar 

  • Woolf CJ, Mitchell D, Barrett GD (1980) Antinociceptive effect of peripheral segmental electrical stimulation in the rat. Pain 8(2):237–252

    Article  PubMed  Google Scholar 

  • Wyss OAM (1975) Prinzipien der elektrischen Reizung. Kommissionsverlag Leemann AG, Zürich

    Google Scholar 

  • Yamamoto T, Yamamoto Y (1977) Analysis for the change of skin impedance. Med Biol Eng Comput 15(3):219–227

    Google Scholar 

  • Yeh RW, Valsdottir LR, Yeh MW, Shen C, Kramer DB, Strom JB, Secemsky EA, Healy JL, Domeier RM, Kazi DS, Nallamothu BK; PARACHUTE Investigators (2008) Parachute use to prevent death and major trauma when jumping from aircraft: randomized controlled trial. BMJ 13(363):k5094

    Google Scholar 

  • Zeng C, Li H, Yang T, Deng ZH, Yang Y, Zhang Y, Lei GH (2015) Electrical stimulation for pain relief in knee osteoarthritis: systematic review and network meta-analysis. Osteoarthritis Cartilage 23(2):189–202

    Google Scholar 

  • Zhao M (2009) Electrical fields in wound healing – an overriding signal that directs cell migration. Semin Cell Dev Biol 20(6):674–682

    Google Scholar 

  • Zhao M, Song B, Pu J et al (2006) Electrical signals control wound healing through phosphatidylinositol-3-OH kinase-gamma and PTEN. Nature 442(7101):457–460

    Google Scholar 

  • Zhu Y, Feng Y, Peng L (2017) Effect of transcutaneous electrical nerve stimulation for pain control after total knee arthroplasty: A systematic review and meta-analysis. J Rehabil Med 21;49(9):700–704

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

5.1 Elektronisches Zusatzmaterial

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Der/die Autor(en), exklusiv lizenziert durch Springer-Verlag GmbH, DE, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

van Kerkhof, P. (2022). Transkutane elektrische Nervenstimulation (TENS). In: Evidenzbasierte Elektrotherapie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-63536-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-63536-0_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-63535-3

  • Online ISBN: 978-3-662-63536-0

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics