Skip to main content

Das Sehen

  • 2222 Accesses

Zusammenfassung

Wohl kaum ein Sinn der Tiere zeigt so vielfältige Formen und Leistungen wie der Sehsinn. Und kaum ein Sinn wird so falsch eingeschätzt durch antropomorphe Vorstellungen. Der Grund für die intuitive Annahme, der Sehsinn der Tiere entspräche im Prinzip dem Sehsinn des Menschen, liegt wohl in der überaus prominenten Rolle, die für uns Menschen das Sehen bei der Erfassung der Wirklichkeit spielt. Kein anderer Sinn liefert uns derart prägnante und detaillierte Eindrücke von unserer Umgebung wie das Sehen. Bilder illustrieren alle Aspekte unseres Erlebens, von annähernd jeder Alltagssituation bis weit in unsere Erinnerungen und Träume. Unser Erleben ist ganz wesentlich eine bildliche Vorstellung der Welt. Und so ist es nachvollziehbar, dass wir einem Tier eine ähnlich visuelle Sinneswelt zuschreiben, wenn es nur Augen hat – und Augen haben tatsächlich fast alleTierarten. Und doch es ist unmöglich sich vorzustellen, wie die Welt für Tiere wirklich aussieht, beispielsweise für die Kammmuscheln (Familie Pectinidae), die am Saum ihres Mantels zwischen den Tentakeln am Schalenrand viele – bei manchen Arten mehr als 100 – kleine Augen tragen (◘ Abb. 7.1, links). Die Augen bestehen aus perfekt geformten, nur etwa 1 mm großen „Augäpfeln“, in welche durch eine Pupille Licht einfällt und eine Netzhaut im Inneren belichtet. Sehen die Muscheln mit diesen Augen gleichzeitig viele parallele Bilder? Oder überlagern sich die Einzelbilder all dieser Augen zu einer Art Panoramablick auf das Korallenriff? Nach welchen Objekten halten die Muscheln Ausschau? Vielleicht nach Seesternen, die ihnen gefährlich werden könnten? Oder nach anderen Kammmuscheln?

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-662-63233-8_7
  • Chapter length: 125 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   59.99
Price excludes VAT (USA)
  • ISBN: 978-3-662-63233-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   79.99
Price excludes VAT (USA)
Abb. 7.1
Abb. 7.2
Abb. 7.3
Abb. 7.4
Abb. 7.5
Abb. 7.6
Abb. 7.7
Abb. 7.8
Abb. 7.9
Abb. 7.10
Abb. 7.11
Abb. 7.12
Abb. 7.13
Abb. 7.14
Abb. 7.15
Abb. 7.16
Abb. 7.17
Abb. 7.18
Abb. 7.19
Abb. 7.20
Abb. 7.21
Abb. 7.22
Abb. 7.23
Abb. 7.24
Abb. 7.25
Abb. 7.26
Abb. 7.27
Abb. 7.28
Abb. 7.29
Abb. 7.30
Abb. 7.31
Abb. 7.32
Abb. 7.33
Abb. 7.34
Abb. 7.35
Abb. 7.36
Abb. 7.37
Abb. 7.38
Abb. 7.39
Abb. 7.40
Abb. 7.41
Abb. 7.42
Abb. 7.43
Abb. 7.44
Abb. 7.45
Abb. 7.46
Abb. 7.47
Abb. 7.48
Abb. 7.49
Abb. 7.50
Abb. 7.51
Abb. 7.52
Abb. 7.53
Abb. 7.54
Abb. 7.55
Abb. 7.56
Abb. 7.57
Abb. 7.58
Abb. 7.59
Abb. 7.60
Abb. 7.61
Abb. 7.62
Abb. 7.63
Abb. 7.64
Abb. 7.65
Abb. 7.66
Abb. 7.67
Abb. 7.68
Abb. 7.69
Abb. 7.70
Abb. 7.71
Abb. 7.72
Abb. 7.73
Abb. 7.74
Abb. 7.75
Abb. 7.76
Abb. 7.77
Abb. 7.78
Abb. 7.79
Abb. 7.80
Abb. 7.81
Abb. 7.82
Abb. 7.83
Abb. 7.84
Abb. 7.85
Abb. 7.86

Literatur

Weiterführende Literatur

  • Arendt D, Hausen H, Purschke G (2009) The ‚division of labour‘ model of eye evolution. Philos Trans R Soc B 364:2809–2817

    CrossRef  Google Scholar 

  • Borst A, Helmstaedter M (2016) Common circuit design in fly and mammalian motion vision. Nat Neurosci 18:1067–1076

    CrossRef  CAS  Google Scholar 

  • Cronin TW, Johnsen S, Marshall NJ, Warrant EJ (2014) Visual ecology. Princeton University Press, Princeton

    CrossRef  Google Scholar 

  • Erwin DH, Valentine JW (2013) The cambrian explosion. The construction of animal biodiversity. Roberts and Company Publishers, Greenwood Village

    Google Scholar 

  • Gehring WJ (2014) The evolution of vision. WIREs Dev Biol 3:1–40

    CAS  CrossRef  Google Scholar 

  • Ghodrati M, Khaligh-Razavi S-M, Lehky SR (2017) Towards building a more complex view of the lateral geniculate nucleus: recent advances in understandiung its role. Prog Neurobiol 156:214–255

    PubMed  CrossRef  Google Scholar 

  • Glaeser G, Paulus HF (2014) The evolution of the eye. Springer Spektrum, Berlin

    Google Scholar 

  • Heinze S, Narendra A, Cheung A (2018) Principles of insect path integration. Curr Biol 28:R1043–R1058

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Horridge A (2009) What does the honeybee see? And how do we know? Australian National University Press, Canberra

    Google Scholar 

  • Horváth G, Varjú D (2004) Polarized light in animal vision. Springer, Berlin

    CrossRef  Google Scholar 

  • Jacobs GH (2014) The discovery of spectral opponency in visual systems and its impact on understanding the neurobiology of color vision. J Hist Neurosci 23:287–314

    PubMed  CrossRef  Google Scholar 

  • Kamermans M, Hawryshyn C (2011) Teleost polarization vision: how it may work and what it might be good for. Philos Trans R Soc B 366:742–756

    CrossRef  Google Scholar 

  • Kelber A (2016) Colour in the eye of the beholder: receptor sensitivities and neural circuits underlying colour opponency and colour perception. Curr Opin Neurobiol 41:106–112

    CAS  PubMed  CrossRef  Google Scholar 

  • Kohn JR, Heath SL, Behnia R (2018) Eyes matched to the prize: the state of matched filters in insect visual circuits. Front Neural Circ 12:26

    CrossRef  CAS  Google Scholar 

  • Korenbrot J (2012) Speed, sensitivity, and stability of the light response in rod and cone photoreceptors: facts and models. Prog Retin Eye Res 31:442–466

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Lamb TD (2016) Why rods and cones? Eye 30:179–185

    CAS  PubMed  CrossRef  Google Scholar 

  • Land MF, Nilsson D-E (2002) Animal eyes. Oxford University Press, Oxford

    Google Scholar 

  • Morshedian A, Fain GL (2017) The evolution of rod photoreceptors. Philos Trans R Soc Lond B 372:20160074

    CrossRef  CAS  Google Scholar 

  • Scholtyßek C, Kelber A (2017) Farbensehen der Tiere. Von farbenblinden Seehunden und tetrachromatischen Vögeln. Ophthalmologe 114:978–985

    PubMed  CrossRef  CAS  Google Scholar 

  • Schwab IR (2012) Evolution’s witness. How eyes evolved. Oxford University Press, New York

    Google Scholar 

  • Sumner-Rooney LO (2018) The kingdom of the blind: disentangling fundamental drivers in the evolution of eye loss. Integr Comp Biol 58:372–385

    PubMed  CrossRef  Google Scholar 

  • Templin RM, How MJ, Roberts NW, Chiou T-H, Marshall J (2017) Circularly polarized light detection in stomatopod crustaceans: a comparison of photoreceptors and possible function in six species. J Exp Biol 220:3222–3230

    PubMed  Google Scholar 

  • Terakita A (2005) The opsins. Genome Biol 6:213

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Thoen HH, How MJ, Chiou T-H, Marshall J (2014) A different form of colour vision in mantis shrimp. Science 343:411–413

    CAS  PubMed  CrossRef  Google Scholar 

  • Warrant EJ (2017) The remarkable visual capacities of nocturnal insects: vision at the limits with small eyes and tiny brains. Philos Trans R Soc B 372:20160063

    Google Scholar 

  • Warrant EJ, Locket NA (2004) Vision in the deep sea. Biol Rev 79:671–712

    Google Scholar 

  • Wehner R (2012) Rennpferde der Insektenwelt. Wüstennavigatoren en miniature. Biol unserer Zeit 6:364–373

    CrossRef  Google Scholar 

  • Yau K-W, Hardie RC (2009) Phototransduction motifs and variations. Cell 139:246–264

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

Zitierte Literatur

  • Arshavsky VY (2010) Vision: the retinoid cycle in drosophila. Curr Biol 20:R96–R98

    CAS  PubMed  CrossRef  Google Scholar 

  • Banks MS, Sprague WW, Schmoll J, Parnell JAQ, Love GD (2015) Why do animal eyes have pupils of different shapes? Sci Adv 1:e1500391

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Behnia R, Desplan C (2015) Visual circuits in flies: beginning to see the whole picture. Curr Opin Neurobiol 34:125–132

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Bok MJ, Capa M, Nilsson D-E (2016) Here, there and everywhere: the radiolar eyes of fan worms (Annelida, Sabellidae). Integr Comp Biol 56:784–795

    PubMed  CrossRef  Google Scholar 

  • Borst A (2014) In search of the holy grail of fly motion vision. Eur J Neurosci 40:3285–3293

    PubMed  CrossRef  Google Scholar 

  • Boström JE, Dimitrova M, Canton M, Hastad O, Qvarnström A, Ödeen A (2016) Ultra-rapid vision in birds. PLoS ONE 11:e0151099

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Butler AB, Hodos W (2005) Comparative vertebrate neuroanatomy. Evolution and adaptation. Wiley-Interscience, Hoboken

    CrossRef  Google Scholar 

  • Bütschli O (1921) Vorlesung über vergleichende Anatomie. Springer, Berlin/Heidelberg

    CrossRef  Google Scholar 

  • Caves EM, Brandley NC, Johnsen S (2018) Visual acuity and the evolution of signals. Trends Ecol Evol 33:358–372

    PubMed  CrossRef  Google Scholar 

  • Collin SP (2010) Evolution and ecology of retinal photoreception in early vertebrates. Brain Behav Evol 75:174–185

    PubMed  CrossRef  Google Scholar 

  • Collin SP, Pettigrew JD (1988) Retinal topography in reef teleosts. II. Some species with prominent horizontal streaks and high-density areae. Brain Behav Evol 31:283–295

    CAS  PubMed  CrossRef  Google Scholar 

  • Cramer CE, Lykke KR, Woodward JT, Smith AW (2013) Precise measurement of lunar spectral irradiance at visible wavelengths. J Res Nat Inst Stand Technol 118:396–402

    CAS  CrossRef  Google Scholar 

  • Cronin TW (1986) Photoreception in marine invertebrates. Am Zool 26:403–415

    CrossRef  Google Scholar 

  • Dacke M, Nordström P, Scholtz CH (2003) Twilight orientation to polarised light in the crepuscular dung beetle Scarabaeus zambesianus. J Exp Biol 206:1535–1543

    PubMed  CrossRef  Google Scholar 

  • Dahmen H (1991) Eye specialization in waterstriders: an adaption to life in a flat world. J Comp Physiol A 169:623–632

    CrossRef  Google Scholar 

  • Dakin WJ (1928) The eyes of Pecten, Spondylus, Amussium and allied lamellibranchs, with a short discussion on their evolution. Proc R Soc B 103:355–365

    Google Scholar 

  • Eguchi E (1965) Rhabdom structure and receptor potentials in single crayfish retinular cells. J Cell Comp Physiol 66:411–430

    CAS  CrossRef  Google Scholar 

  • Fagot J, Barbet I, Parron C, Deruelle C (2006) Amodal completion by baboons (Papio papio): contribution of background depth cues. Primates 47:145–150

    PubMed  CrossRef  Google Scholar 

  • Fischer S, Müller CHG, Meyer-Rochow VB (2010) How small can small be: the compound eye of the parasitoid wasp Trichogramm evanescens (Westwood, 1833) (Hymenoptera, Hexapoda), an insect of 0.3- to 0.4-mm total body size. Vis Neurosci 27:1–14

    CrossRef  Google Scholar 

  • Flamarique IN (2010) Unique photoreceptor arrangements in a fish with polarized light discrimination. J Comp Neurol 519:714–737

    CrossRef  Google Scholar 

  • Flamarique IN (2017) A vertebrate retina with segregated colour and polarization vision. Proc R Soc B 284:20170759

    CrossRef  CAS  Google Scholar 

  • Fritsches KA, Brill RW, Warrant EJ (2005) Warm eyes provide superior vision in swordfishes. Curr Biol 15:55–58

    CAS  PubMed  CrossRef  Google Scholar 

  • Gunkel M, Schöneberg J, Alkhaldi W, Irsen S, Noé F, Kaupp UB, Al-Amoudi A (2015) Higher-order architecture of rhodopsin in intact photoreceptors and its implication for phototransduction kinetics. Structure 23:628–638

    CAS  PubMed  CrossRef  Google Scholar 

  • Guo X, Sugita S (2000) Topography of ganglion cells in the retina of the horse. J Vet Med Sci 62:1145–1150

    CAS  PubMed  CrossRef  Google Scholar 

  • Hardie RC, Juusola M (2015) Phototransduction in drosophila. Curr Opin Neurobiol 34:37–45

    CAS  PubMed  CrossRef  Google Scholar 

  • Hassenstein B, Reichardt W (1956) Systemtheoretische Analyse der Zeit-, Reihenfolge- und Vorzeichenauswertung bei der Bewegungsperzeption des Rüsselkäfers Chlorophanus. Z Naturforsch 11b:513–524

    CrossRef  Google Scholar 

  • Healy K, McNally L, Ruxton GD, Cooper N, Jackson AL (2013) Metabolic rate and body size are linked with perception of temporal information. Anim Behav 86:685–696

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Heinze S (2014) Polarization vision. In: Jaeger D, Jung R (Hrsg) Encyclopedia of computational neuroscience. Springer, Berlin/Heidelberg

    Google Scholar 

  • Hertz M (1928) Wahrnehmungspsychologische Untersuchungen am Eichelhäher I. Z Vgl Physiol 7:144–194

    CrossRef  Google Scholar 

  • Heß M, Melzer RR, Eser R, Smola U (2006) The structure of anchovy outer retina (Engraulidae, Clupeiformes) – a comparative light- and electron-microscopic study using museum-stored material. J Morphol 267:1356–1380

    PubMed  CrossRef  Google Scholar 

  • Holmberg K (1977) The cyclostome retina. In: Crescitelli F (Hrsg) Handbook of sensory physiology, Bd VII/5. Springer, Berlin, S 47–66

    Google Scholar 

  • Horridge A (2015) How bees distinguish colour. Eye Brain 7:17–34

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Hughes A (1977) The topography of vision in mammals of contrasting lifestyles: comparative optics and retinal organisation. In: Crescitelli F et al (Hrsg) The visual system in vertebrates. Springer, Berlin/Heidelberg, S 615–756

    Google Scholar 

  • Ingram NT, Sampath AP, Fain GL (2016) Why are rods more sensitive than cones? J Physiol 594:5415–5426

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Jacobs GH (2013) Losses of functional opsin genes, short-wavelength cone photopigments, and color vision – a significant trend in the evolution of mammalian vision. Vis Neurosci 30:39–53

    PubMed  CrossRef  Google Scholar 

  • Jeffrey WR (2005) Adaptive evolution of eye degeneration in the Mexican blind cavefish. J Heredity 96:185–196

    CrossRef  CAS  Google Scholar 

  • Jékely G (2009) Evolution of phototaxis. Philos Trans R Soc B 365:2795–2808

    CrossRef  Google Scholar 

  • Kirschfeld K (1971) Aufnahme und Verarbeitung optischer Daten im Komplexauge von Insekten. Naturwiss 58:201–209

    CAS  PubMed  CrossRef  Google Scholar 

  • Kirschfeld K (1974) The absolute sensitivity of lens and compound eye. Z Naturforsch 29C:592–596

    CAS  CrossRef  Google Scholar 

  • Kirschfeld K (1984) Linsen- und Komplexaugen: Grenzen ihrer Leistung. Naturwiss Rundschau 37:352–362

    Google Scholar 

  • Krishnan J, Rohner N (2017) Cavefish and the basis for eye loss. Philos Trans R Soc B 372:20150487

    CrossRef  Google Scholar 

  • Kuchiiwa T, Kuchiiwa S, Teshirogi W (1991) Comparative morphological studies on the visual systems in a binocular and a multi-ocular species of freshwater planaria. Hydrobiol 227:241–249

    CrossRef  Google Scholar 

  • Land MF (1969a) Structure of the retinae of the principal eyes of jumping spiders (Salticidae: Dendryphantinae) in relation to visual optics. J Exp Biol 51:443–470

    CAS  PubMed  CrossRef  Google Scholar 

  • Land MF (1969b) Movements of the retinae of jumping spiders (Salticidae: Dendryphantinae) in response to visual stimuli. J Exp Biol 51:471–493

    CAS  PubMed  CrossRef  Google Scholar 

  • Land MF (1997) Visual acuity in insects. Annu Rev Entemol 42:147–177

    CAS  CrossRef  Google Scholar 

  • Land MF (2000) Eyes with mirror optics. J Opt A Pure Appl Opt 2:R44–R50

    CrossRef  Google Scholar 

  • Land MF, Nilsson D-E (2002) Animal eyes. Oxford University Press, Oxford

    Google Scholar 

  • Lazareva OF, Shimizu T, Wasserman EA (Hrsg) (2012) How animals see the world. Comparative behavior, biology, and evolution of vision. Oxford University Press, Oxford/New York

    Google Scholar 

  • Luo D-G, Xue T, Yau K-W (2008) How vision begins: an odyssey. Proc Natl Acad Sci U S A 105:9855–9862

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Marshall NJ, Land MF (1993) Some optical features of the eyes of stomatopods. I. Eye shape, optical axes and resolution. J Comp Physiol A 173:565–582

    CrossRef  Google Scholar 

  • Mascalzoni E, Regolin L (2011) Animal visual perception. Wiley Interdiscip Rev Cogn Sci 2:106–116

    PubMed  CrossRef  Google Scholar 

  • Mazade R, Alonso JM (2017) Thalamocortical processing in vision. Vis Neurosci 34:e007

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Menzel JG, Wunderer H, Stavenga DG (1991) Functional morphology of the divided compound eye of the honeybee drone (Apis mellifera). Tissue Cell 23:525–535

    CAS  PubMed  CrossRef  Google Scholar 

  • Meyer DL (1974) Tectum opticum und Orientierungsrektion. Biol unserer Zeit 4:107–112

    CrossRef  Google Scholar 

  • Meyer EP, Labhart T (1993) Morphological specializations of dorsal rim ommatidia in the compound eye of dragonflies and damselflies (Odonata). Cell Tissue Res 272:17–22

    CrossRef  Google Scholar 

  • Meyer-Rochow VB, Horridge GA (1975) The eye of Anoplognathus (Coleoptera, Scarabaeidae). Proc R Soc Lond B 188:1–30

    CAS  PubMed  CrossRef  Google Scholar 

  • Miall RC (1978) The flicker fusion frequencies of six laboratory insects, and the response of the compound eye to mains fluorescent „ripple“. Physiol Entomol 3:99–106

    CrossRef  Google Scholar 

  • Mitkus M, Chaib S, Lind O, Kelber A (2014) Retinal ganglion cell topography and spatial resolution of two parrot species: budgerigar (Melopsittacus undulatus) and Bourke’s parrot (Neopsephotus bourkii). J Comp Physiol A 200:371–384

    CrossRef  Google Scholar 

  • Mitkus M, Nevitt GA, Danielsen J, Kelber A (2016) Vision on the high seas: spatial resolution and optical sensitivity in two procellariiform seabirds with different foraging strategies. J Exp Biol 219:3329–3338

    PubMed  Google Scholar 

  • Montell C (2012) drosophila visual transduction. Trends Neurosci 35:356–363

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Moritz GL, Melin AD, Yu FTY, Bernard H, Ong PS, Dominy NJ (2014) Niche convergence suggests functionality of the nocturnal fovea. Front Integr Neurosci 8:61

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Nilsson D-E (2009) The evolution of eyes and visually guided behaviour. Philos Trans R Soc B 364:2833–2847

    CrossRef  Google Scholar 

  • Nilsson D-E, Ro A-I (1994) Did neural pooling for night vision lead to the evolution of neural superposition eyes? J Comp Physiol A 175:289–302

    CrossRef  Google Scholar 

  • Nilsson D-E, Labhart T, Meyer E (1987) Photoreceptor design and optical properties affecting polarization sensitivity in ants and crickets. J Comp Physiol A 161:645–658

    CrossRef  Google Scholar 

  • Nityananda V, Read JCA (2017) Stereopsis in animals: evolution, function and mechanisms. J Exp Biol 220:2502–2512

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Öhman P (1976) Fine structure of photoreceptors and associated neurons in the retina of Lampetra fluviatilis (Cyclostomi). Vis Res 16:659–662

    PubMed  CrossRef  Google Scholar 

  • Ott M (2001) Chameleons have independent eye movements but synchronize both eyes during saccadic prey tracking. Exp Brain Res 139:173–179

    CAS  PubMed  CrossRef  Google Scholar 

  • Palavalli-Nettimi R, Narendra A (2018) Miniaturisation decreases visual navigational competence in ants. J Exp Biol 221:1–10

    Google Scholar 

  • Palmer BA, Hirsch A, Brumfeld V, Aflalo ED, Pinkas I, Sagi A, Rosenne S, Oron D, Leiserowitz L, Kronik L, Weiner S, Addadi L (2018) Optically functional isoxanthopterin crystals in the mirrored eyes of decapod crustaceans. Proc Natl Acad Sci U S A 115:2299–2304

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Partridge JC, Douglas RH (1995) Far-red sensitivity of dragon fish. Nature 375:21–22

    CAS  CrossRef  Google Scholar 

  • Pepperberg IM, Vicinay J, Cavanagh P (2008) Processing of the Müller-Lyer illusion by a grey parrot (Psittacus erithacus). Perception 37:765–781

    PubMed  CrossRef  Google Scholar 

  • Pettigrew JD, Manger PR (2008) Retinal ganglion cell density of the black rhinoceros (Diceros bicornis): calculating visual resolution. Vis Neurosci 25:215–220

    PubMed  CrossRef  Google Scholar 

  • Potier S, Lieuvin M, Pfaff M, Kelber A (2020) How fast can raptors see? J Exp Biol 223:jeb209031

    PubMed  Google Scholar 

  • Querubin A, Lee HR, Provis JM, O’Brien KMB (2009) Photoreceptor and ganglion cell topographies correlate with information convergence and high acuity regions in the adult pigeon (Columba livia) retina. J Comp Neurol 517:711–722

    PubMed  CrossRef  Google Scholar 

  • Rapaport DH, Stone J (1984) The Area centralis of the retina in the cat and other mammals: focal point for function and development of the visual system. Neuroscience 11:289–301

    CAS  PubMed  CrossRef  Google Scholar 

  • Rio JP, Vesselkin NP, Repérant J, Kenigfest NB, Versaux-Botteri C (1998) Lamprey ganglion cells contact photoreceptor cells. Neurosci Lett 250:103–106

    CAS  PubMed  CrossRef  Google Scholar 

  • Rodiek RW (1998) The first steps in seeing. Sinauer Associates, Sunderland

    Google Scholar 

  • Rosa Salva O, Sovrano VA, Vallortigara G (2014) What can fish brains tell us about visual perception? Front Neural Circ 8:119

    Google Scholar 

  • Saari JC (2016) Vitamin A and vision. In: Asson-Batres MA, Rochette-Egly C (Hrsg) The biochemistry of retinoid signaling II. Subcellular biochemistry. Springer Science, Dordrecht

    Google Scholar 

  • Salomon F-V, Geyer H, Gille U (2015) Anatomie für die Tiermedizin. Enke, Stuttgart

    CrossRef  Google Scholar 

  • Schäfer HJ, Schmidt U, Brzoska J, Hubl L (1978) Temperature dependence of visual frequency in Rana lessonae Cam., Bufo bufo L. and Bombina bombina (L.) (Amphibia). Behav Process 3:259–264

    CrossRef  Google Scholar 

  • Schwab IR (2012) Evolution’s witness. How eyes evolved. Oxford University Press, New York

    Google Scholar 

  • Simmons PJ, Sztarker J, Rind FC (2013) Looming detection by identified visual interneurons during larval development of the locust Locusta migratoria. J Exp Biol 216:2266–2275

    PubMed  Google Scholar 

  • Srinivasan MV, Lehrer M (1984) Temporal acuity of honeybee vision: behavioural studies using moving stimuli. J Comp Physiol A 155:297–312

    CrossRef  Google Scholar 

  • Stöckl AL, Ribi WA, Warrant EJ (2016) Adaptations for nocturnal and diurnal vision in then hawkmoth lamina. J Comp Neurol 524:160–175

    PubMed  CrossRef  Google Scholar 

  • Toomey MB, Corbo JC (2017) Evolution, development and function of vertebrate cone oil droplets. Front Neural Circ 11:97

    CrossRef  CAS  Google Scholar 

  • von Uexküll J (1921) Umwelt und Innenwelt der Tiere. Springer, Berlin/Heidelberg

    CrossRef  Google Scholar 

  • Via SE (1977) Visually mediated snapping in the bulldog ant: a perceptual ambiguity between size and distance. J Comp Physiol A 121:33–51

    CrossRef  Google Scholar 

  • Vinberg F, Kefalov VJ (2018) Investigating the Ca2+-dependent and Ca2+-independent mechanisms for mammalian cone light adaptation. Sci Rep 8:15864

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Vogt K (1980) Die Spiegeloptik des Flußkrebsauges. J Comp Physiol 135:1–19

    CrossRef  Google Scholar 

  • Walls GL (1942) The vertebrate eye and its adaptive radiation. Reprinted 2018 by Forgotton Books, London

    Google Scholar 

  • Wang J-S, Kefalov VJ (2011) The cone-specific visual cycle. Prog Retin Eye Res 30:115–128

    CAS  PubMed  CrossRef  Google Scholar 

  • Wang X, Wang T, Jiao Y, von Lintig J, Montell C (2010) Requirement for an enzymatic visual cycle in drosophila. Curr Biol 20:93–102

    CAS  PubMed  CrossRef  Google Scholar 

  • Warrant EJ (2017) The remarkable visual capacities of nocturnal insects: vision at the limits with small eyes and tiny brains. Philos Trans R Soc B 372:20160063

    CrossRef  Google Scholar 

  • Warrant EJ, Locket NA (2004) Vision in the deep sea. Biol Rev 79:671–712

    PubMed  CrossRef  Google Scholar 

  • Young JZ (1965) The central nervous system of Nautilus. Philos Trans R Soc B 249:1–25

    Google Scholar 

  • Young JZ (1989) The Bayliss-Starling lecture. Some special senses in the sea. J Physiol 411:1–25

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Zollikofer CPE, Wehner R, Fukushi T (1995) Optical scaling in conspecific Cataglyphis ants. J Exp Biol 198:1637–1646

    CAS  PubMed  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Frings .

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Frings, S. (2021). Das Sehen. In: Die Sinne der Tiere. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-63233-8_7

Download citation