Skip to main content

Modellorganismen in der Sinnesphysiologie

  • 2106 Accesses

Zusammenfassung

Eine fundamentale Erkenntnis aus der Evolutionsforschung ist, dass die Lebensvorgänge aller Organismen vergleichbar sind, weil sie letztlich aus physiologischen Prozessen gemeinsamer Vorfahren entstanden sind. Für die vergleichende Sinnesphysiologie, die sich mit den Gewebetieren (Eumetazoa) beschäftigt, bedeutet diese Vergleichbarkeit, dass sensorische Prozesse im gesamten Tierreich nach den gleichen Prinzipien ablaufen. Auf den ersten Blick mag eine solche Abschätzung absurd erscheinen. Was schließlich hat die Berührungsempfindlichkeit eines Fadenwurmes mit dem Tastsinn einer Maus zu tun? Je genauer man aber hinschaut, desto deutlicher treten Gemeinsamkeiten hervor, und der Nachweis gemeinsamer genetischer Merkmale reicht heute schon in präkambrische Zeiten zurück, also in Zeiträume lange vor der Diversifizierung der heute lebenden Tierstämme. Tatsächlich erscheinen uns die Gemeinsamkeiten der Augen von Quallen, Muscheln, Perlbooten, Haien und Vögeln offensichtlich, obwohl diese Tiergruppen keineswegs in gemeinsamen Entwicklungslinien stehen. Trotzdem zeigen sie Ähnlichkeiten sowohl in ihrer genetischen Ausstattung als auch bei der Strukturierung und der Funktion ihrer Augen. Es ist in diesem Zusammenhang unerheblich, inwieweit Sinnesorgane durch monophyletische oder polyphyletische Evolutionsprozesse entstanden sind; die Ähnlichkeiten in Struktur und Funktion bilden die Basis sinnvoller Vergleiche. Wir können davon ausgehen, dass sensorische Prozesse erkennbare Parallelen bei allen Tieren aufzeigen, dass sie aber darüber hinaus durch Anpassungen an die arttypischen Erfordernisse geformt worden sind.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-662-63233-8_17
  • Chapter length: 13 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   59.99
Price excludes VAT (USA)
  • ISBN: 978-3-662-63233-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   79.99
Price excludes VAT (USA)
Abb. 17.1
Abb. 17.2
Abb. 17.3
Abb. 17.4
Abb. 17.5

Literatur

Weiterführende Literatur

  • Biro D, Matsuzawa T (2001) Use of numerical symbols by the chimpanzee (Pan troglodytes): cardinals, ordinals, and the introduction of zero. Anim Cogn 4:193–199

    CAS  PubMed  CrossRef  Google Scholar 

  • Clayton NS, Emery NJ (2015) Avian models for human cognitive neuroscience: a proposal. Neuron 86:1330–1342

    CAS  PubMed  CrossRef  Google Scholar 

  • Crawley JN (2007) What’s wrong with my mouse. Behavioral phenotyping of transgenic and knockout mice. Wiley-Interscience, Hoboken

    CrossRef  Google Scholar 

  • Gilbert DL, Adelman WJ, Arnold JM (1990) Squid as experimental animals. Plenum Press, New York

    CrossRef  Google Scholar 

  • Heyes C (2012) Simple minds: a qualified defence of associative learning. Philos Trans R Soc B 367:2695–2703

    CrossRef  Google Scholar 

  • Howard SR, Avarguès-Weber A, Garcia JE, Greentree AD (2018) Numerical ordering of zero in honey bees. Science 360:1124–1126

    CAS  PubMed  CrossRef  Google Scholar 

  • Mantziaris C, Bockemühl T, Büschges A (2020) Central pattern generating networks in insect locomotion. Dev Neurobiol 80:16–30

    PubMed  CrossRef  Google Scholar 

  • Mason RT, Parker MR (2010) Social behavior and pheromonal communication in reptiles. J Comp Physiol A 196:729–749

    Google Scholar 

  • Nelson NC (2018) Model behavior. Animal experiments, complexity, and the genetics of psychiatric disorders. The University of Chicago Press, Chicago

    CrossRef  Google Scholar 

  • Pepperberg IM (2008) Alex & Me. How a scientist and a parrot discovered a hidden world of animal intelligence – and formed a deep bond in the process. Harper, New York

    Google Scholar 

  • Rengarajan S, Hallem EA (2015) Olfactory circuits and behaviors of nematodes. Curr Opin Neurobiol 41:136–148

    Google Scholar 

  • Schenkel J (2006) Transgene Tiere. Springer, Heidelberg

    Google Scholar 

  • Supin AY, Popov VV, Mass AM (2001) The sensory physiology of aquatic mammals. Kluwer, Dordrecht

    CrossRef  Google Scholar 

  • Thewissen JGM, Nummela S (Hrsg) (2008) Sensory evolution on the threshold. Adaptations in secondary aquatic vertebrates. University of California Press, Berkeley

    Google Scholar 

  • Wynne CDLK, Udell MAR (2013) Animal cognition. Evolution, behavior & cognition. Red Globe Press, London

    Google Scholar 

Zitierte Literatur

  • Ai H (2013) Sensors and sensory processing for airborne vibrations in silk moths and honeybees. Sensors 13:9344–9363

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Aiello BR, Hardy AR, Westneat MW, Hale ME (2018) Fins as mechanosensors for movement and touch-related behaviors. Integr Comp Biol 58:844–859

    PubMed  Google Scholar 

  • Albert JT, Göpfert MC (2016) Hearing in drosophila. Curr Opin Neurobiol 34:79–85

    CrossRef  CAS  Google Scholar 

  • Amin H, Lin AC (2019) Neuronal mechanisms underlying innate and learned olfactory processing in drosophila. Curr Opin Insect Sci 36:9–17

    PubMed  CrossRef  Google Scholar 

  • Arendt D, Tessmar-Raible K, Snyman H, Dorresteijn AW, Wittbrodt J (2004) Ciliary photoreceptors with a vertebrate-type opsin in an invertebrate brain. Science 306:869–871

    CAS  PubMed  CrossRef  Google Scholar 

  • Azimzadeh JB, Fabella BA, Kastan NR, Hudspeth AJ (2018) Thermal excitation of the mechanotransduction apparatus of hair cells. Neuron 97:586–595

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Barth FG (2001) Sinne und Verhalten: aus dem Leben einer Spinne. Springer, Berlin

    CrossRef  Google Scholar 

  • Bigiani A (2002) Electrophysiology of Necturus taste cells. Prog Neurobiol 66:123–159

    PubMed  CrossRef  Google Scholar 

  • Biswas A, Manivannan M, Srinivasan MA (2015) Multiscale layered biomechanical model of Pacinian corpuscle. IEEE Trans Haptic 8:102–113

    CrossRef  Google Scholar 

  • Blaser N, Guskov SI, Meskenaite V, Kanevskyi VA, Lipp H-P (2013) Altered orientation and flight paths of pigeons reared on gravity anomalies: a GPS tracking study. PLoS ONE 8:e77102

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Branoner F, Straka H (2015) Semicircular canal influences on the developmental tuning of the translational vestibulo-ocular reflex. Front Neurol 9:404

    CrossRef  Google Scholar 

  • Büschges A, Akay T, Gabriel JP, Schmidt J (2008) Organizing network action for locomotion: insights from studying insect walking. Brain Res Rev 75:162–171

    Google Scholar 

  • Carrillo A, Le DV, Byron M, Jiang H, McHenry MJ (2019) Canal neuromasts enhance foraging in zebrafish (Danio rerio). Bioinspir Biomim 14:035003

    CAS  PubMed  CrossRef  Google Scholar 

  • Catania KC (2008) Worm grunting, fiddling, and charming – humans unknowingly mimic a predator to harvest bait. PLoS ONE 3:e3472

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Catania KC (2019) The astonishing behavior of electric eels. Front Integr Neurosci 13:23

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Chen Q, Liu Y, Brauth SE, Fang G, Tang Y (2017) The thermal background determines how the infrared and visual systems interact in pit vipers. J Exp Biol 220:3103–3109

    PubMed  CrossRef  Google Scholar 

  • Christensen CB, Christensen-Dalsgaard J, Brandt C, Madsen PT (2012) Hearing with an atympanic ear: god vibration and poor sound-pressure detection in the royal python, Python regius. J Exp Biol 215:331–342

    PubMed  CrossRef  Google Scholar 

  • Christensen-Dalsgaard J, Elepfandt A (1995) Biophysics of underwater hearing in the clawed frog, Xenopus laevis. J Comp Physiol A 176:317–324

    CAS  PubMed  CrossRef  Google Scholar 

  • Clarke D, Morley E, Robert D (2017) The bee, the flower, and the electric field: electric ecology and aerial electroreception. J Comp Physiol A 203:737–748

    CrossRef  Google Scholar 

  • Crampton WGR (2019) Electroreception, electrogenesis and signal evolution. J Fish Biol 95:92–134

    PubMed  CrossRef  Google Scholar 

  • Crook RJ, Walters ET (2011) Nociceptive behavior and physiology of molluscs: animal welfare implications. ILAR J 52:185–195

    CAS  PubMed  CrossRef  Google Scholar 

  • Czech-Damal NU, Dehnhardt G, Manger P, Hanke W (2013) Passive electroreception in aquatic mammals. J Comp Physiol A 199:555–563

    CrossRef  Google Scholar 

  • Dubbeldam JL (1998) The sensoy trigeminal system in birds: input, organization and effects of peripheral damage. A review. Arch Phyiol Biochem 106:338–345

    CAS  CrossRef  Google Scholar 

  • Ernst DA, Lohmann KJ (2016) Effect of magnetic pulses on caribbean spiny lobsters: implications for magnetoreception. J Exp Biol 219:1827–1832

    PubMed  Google Scholar 

  • Fettiplace R (2017) Hair cell transduction, tuning, and synaptic transmission in the mammalian cochlea. Compr Physiol 7:1197–1227

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Friedrich RW (2013) Neuronal computations in the olfactory system of zebrafish. Annu Rev Neurosci 36:383–402

    CAS  PubMed  CrossRef  Google Scholar 

  • Galizia CG, Sachse S (2010) Odor coding in insects. In: Menini A (Hrsg) The neurobiology of olfaction. CRC Press, Boca Raton

    Google Scholar 

  • Goldberg JM, Wilson VJ, Cullen KE et al (2012) The vestibular system: a sixth sense. Oxford University Press, Oxford

    CrossRef  Google Scholar 

  • Grasso F, Wells M (2016) Tactile sensing in the octopus. In: Prescott TJ et al (Hrsg) Scholarpedia of touch. Atlantis Press, Paris

    Google Scholar 

  • Guénette SA, Giroux M-C, Vachon P (2013) Pain perception and anaesthesia in research frogs. Exp Anim 62:87–92

    PubMed  CrossRef  Google Scholar 

  • Günther A, Einwich A, Sjulstock E, Feederle R, Bolte P, Koch KW, Solov’yov IA, Mouritsen H (2018) Double-cone localization and seasonal expression pattern suggests a role in magnetoreception for european robin cryptochrome 4. Curr Biol 28:211–223

    PubMed  CrossRef  CAS  Google Scholar 

  • Hall JM, McLoughlin DP, Kathman ND, Yarger AM, Mureli S, Fox JL (2015) Kinematic diversity suggests expanded roles for fly halteres. Biol Lett 11:20150845

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Hodos W (2012) What birds see and what they don’t. In: Lazareva OF et al (Hrsg) How animals see the world. Oxford University Press, Oxford

    Google Scholar 

  • Hoffstaetter LJ, Bagriantsev SN, Gracheva EO (2018) TRPs et al.: a molecular toolkit for thermosensory adaptations. Pflugers Arch 470:745–759

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Holbrook RI, Mortimer B (2018) Vibration sensitivity found in Caenorhabditis elegans. J Exp Biol 221:jeb178947

    PubMed  CrossRef  Google Scholar 

  • Holman L, Helanterä H, Trontti K, Mikheyev AS (2019) Comparative transcriptomics of social insect queen phermomones. Nat Commun 10:1593

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Im SH, Galko MJ (2012) Pokes, sunburns, and hot sauce: drosophila as an emerging model for the biology of nociception. Dev Dyn 241:16–26

    PubMed  CrossRef  Google Scholar 

  • Junca P, Sandoz J-C (2015) Heat perception and aversive learning in honey bees: putative involvement of the thermal/chemical sensor AmHsTRPA. Front Physiol 6:316

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Jusufi A, Zeng Y, Full RJ, Dudley R (2011) Aerial righting reflexes in flightless animals. Integr Comp Biol 51:937–943

    PubMed  CrossRef  Google Scholar 

  • Ketter-Katz H, Lev-Ari T, Katzir G (2020) Vision in chameleons – a model for non-mammalian vertebrates. Semin Cell Dev Biol 106:94–105. S1084-9521(19)30240-X

    PubMed  CrossRef  Google Scholar 

  • Koutsikou S, Merrison-Hort R, Buhl E et al (2018) A simple decision to move in response to touch reveals basic sensory memory and mechanisms for variable response times. J Physiol 596:6219–6233

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Levi R, Varona P, Arshavsky YI, Rabinovich MI, Selverston AI (2004) Dual sensory-motor function for a molluscan statocyst network. J Neurophysiol 91:336–345

    CAS  PubMed  CrossRef  Google Scholar 

  • Li K, Buchinger TJ, Li W (2018) Discovery and characterization of natural products that act as phermones in fish. Nat Prod Rep 35:501

    CAS  PubMed  CrossRef  Google Scholar 

  • Liang C, Chuang C, Jiang J et al (2016) Magnetic sensing through the abdomen of the honey bee. Sci Rep 6:23657

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Lohmann KJ, Lohmann CMF (2019) There an back again: natal homing by magnetic navigation in sea turtles and salmon. J Exp Biol 222:jeb184077

    PubMed  CrossRef  Google Scholar 

  • Malafoglia V, Bryant B, Raffaeli W, Giordano A, Bellipanni G (2013) The zebrafish as a model for noceception studies. J Cell Physiol 228:1956–1966

    CAS  PubMed  CrossRef  Google Scholar 

  • Manzini I, Schild D (2010) Olfactory coding in larvae of the african clawed frog Xenopus laevis. In: Menini A (Hrsg) The neurobiology of olfaction. CRC Press, Boca Raton

    Google Scholar 

  • Martin GR (2017) The sensory ecology of birds. Oxford University Press, Oxford

    CrossRef  Google Scholar 

  • Mason RT, Parker MR (2010) Social behavior and pheromonal communication in reptiles. J Comp Physiol A 196:729–749

    CAS  CrossRef  Google Scholar 

  • Mohrhardt J, Nagel M, Fleck D, Ben-Shaul Y, Spehr M (2018) Signal detection and coding in the acessory olfactory system. Chem Senses 43:667–695

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Mouritsen H (2018) Long-distance navigation and magnetoreception in migratory animals. Nature 558:50–59

    CAS  PubMed  CrossRef  Google Scholar 

  • Nadrowski B, Effertz T, Senthilan PR, Göpfert MC (2011) Antennal hearing in insects – new findings, new questions. Hear Res 273:7–13

    PubMed  CrossRef  Google Scholar 

  • Naisbett-Jones LC, Putman NF, Scanian MM, Noakes DLG, Lohmann KJ (2020) Magnetoreception in fishes: the effect of magnetic pulses on orientation of juvenile Pacific salmon. J Exp Biol 223:jeb222091

    PubMed  CrossRef  Google Scholar 

  • Newton KC, Gill AB, Kajiura SM (2019) Electroreception in marine fishes: chondrichthyans. J Fish Biol 95:135–154

    PubMed  Google Scholar 

  • Okada S (2015) The taste system of small fish species. Biosci Biotechnol Biochem 79:1039–1043

    CAS  PubMed  CrossRef  Google Scholar 

  • Padget O, Dell’Ariccia G, Gagliardo A, González-Solís J, Guilford T (2017) Anosmia impairs homing orientation but not foraging behaviour in free-ranging shearwaters. Sci Rep 7:9668

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Paulk A, Millard SS, van Swinderen B (2013) Vision in drosophila: seeing the world through a model’s eyes. Annu Rev Entomol 58:313–332

    CAS  PubMed  CrossRef  Google Scholar 

  • Petersen CCH (2019) Sensorimotor processing in the rodent barrel cortex. Nat Rev Neurosci 20:533–546

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Rahmann H, Anken RH (2000) Gravitational neurobiology of fish. Adv Space Res 25:1985–1995

    CAS  PubMed  CrossRef  Google Scholar 

  • Reiter S, Laurent G (2020) Visual perception and cuttlefish camouflage. Curr Opin Neurobiol 60:47–54

    CAS  PubMed  CrossRef  Google Scholar 

  • Rengarajan S, Hallem EA (2015) Olfactory circuits and behaviors of nematodes. Curr Opin Neurobiol 41:136–148

    CrossRef  CAS  Google Scholar 

  • Ritzmann RE, Harley CM, Daltorio KA et al (2012) Deciding which way to go: how do insects alter movements to negotiate barieres? Front Neurosci 6:97

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Sakurai T, Namiki S, Kanzaki R (2014) Molecular and neural mechanisms of sex phermonone reception and processing in the silkmoth Bombyx. Front Physiol 5:125

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Samson JE, Mooney TA, Gussekloo SW, Hanlon RT (2016) A brief review of cephalopod behavioral responses to sound. Adv Exp Med Biol 875:969–975

    PubMed  CrossRef  Google Scholar 

  • Schafer WR (2015) Mechanosensory molecules and circuits in C. elegans. Pflügers Archiv – Eur J Physiol 467:39–48

    CAS  CrossRef  Google Scholar 

  • Schneider ES, Schmitz A, Schmitz H (2015) Concept of an active amplification mechanism in the infrared organ of pyrophilous Melanophila beetles. Front Physiol 6:391

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Schneider ES, Römer H, Robillard T, Schmidt AKD (2017) Hearing with exceptionally thin tympana: ear morpholoy and tympanal membane vibrations in eneopterine crickets. Sci Rep 7:15266

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Scott K (2018) Gustatory processing in drosophila melanogaster. Annu Rev Entomol 63:15–30

    CAS  PubMed  CrossRef  Google Scholar 

  • Seabrook TA, Burbridge TJ, Crair MC, Huberman AD (2017) Architecture, function and assembly of the mouse visual system. Annu Rev Neurosci 40:499–538

    CAS  PubMed  CrossRef  Google Scholar 

  • Sinn R, Wittbrodt J (2013) An eye on eye development. Mech Dev 130:347–358

    CAS  PubMed  CrossRef  Google Scholar 

  • Sötje I, Dishon T, Hoffmann F, Holst S (2017) New methods of morphometric analyses on scyphozoan jellyfish statoliths inducing the first direct evidence for statolith growth using calcein as a fluorescence marker. Microsc Microanal 23:553–568

    PubMed  CrossRef  CAS  Google Scholar 

  • Taniguchi K, Taniguchi K (2014) Phylogenetic studies on the olfactory system in vertebrates. J Vet Med Sci 76:781–788

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Tappe-Theodor A, King T, Morgan MM (2019) Pros and Cons of clinically relevant methods to assess pain in rodents. Neurosci Biobehav Rev 100:335–343

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Tichy H, Zopf LM (2015) The effect of convection on infrared detection by antennal warm cells in the bloodsucking bug Rhodnius prolixus. J Neurophysiol 113:2250–2261

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Vona B, Doll J, Hofrichter MAH, Haaf T, Varshney GK (2020) Small fish, big prospects: using zebrafish to unravel the mechanisms of hereditary hearing loss. Hear Res 397:107906

    PubMed  CrossRef  CAS  PubMed Central  Google Scholar 

  • Wagner H, Kettler L, Orlowski J, Tellers P (2013) Neuroethology of prey capture in the barn owl (Tyto alba L.). J Physiol Paris 107:51–61

    PubMed  CrossRef  Google Scholar 

  • Wang L, Gillis-Smith S, Peng Y, Zhang J, Chen X, Salzman CD, Ryba NJP, Zuker CS (2018) The coding of valence and identity in the mammalian taste system. Nature 558:127–131

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Wilson CD, Serano GO, Koulakov AA, Rinberg D (2017) A primacy code for odor identity. Nat Commun 8:1477

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Wiltschko R, Wiltschko W (2019) Magnetoreception in birds. J R Soc Interface 16:20190295

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Wohlgemuth MJ, Luo J, Moss CF (2016) Three-dimensional auditory localization in the echolocating bat. Curr Opin Neurobiol 41:78–86

    CAS  PubMed  CrossRef  Google Scholar 

  • Woodley SK (2010) Pheromonal communication in amphibians. J Comp Physiol A 196:713–727

    CAS  CrossRef  Google Scholar 

  • Wu C-L, Fu T-F, Chiang M-H, Chang Y-W, Her J-L, Wu T (2016) Magnetoreception regulates male courtship activity in drosophila. PLoS ONE 11:e0155942

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Yau K-W, Hardie RC (2009) Phototransduction motifs and variations. Cell 139:246–264

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Zelená J, Halata Z, Szeder V, Grim M (1997) Crural Herbst corpuscles in chicken and quail: numbers and structure. Anat Embryol 196:323–333

    CrossRef  Google Scholar 

  • Zou W, Cheng H, Li S, Yue X, Xue Y, Chen S, Kang L (2017) Polymodal responses in C. elegans phasmid neurons rely on multiple intracellular and intercellular signaling pathways. Sci Rep 7:42295

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Frings .

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Frings, S. (2021). Modellorganismen in der Sinnesphysiologie. In: Die Sinne der Tiere. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-63233-8_17

Download citation