Skip to main content

Disorders of Haem Biosynthesis

  • Chapter
  • First Online:
Inborn Metabolic Diseases

Abstract

Features of X-Linked sideroblastic anaemia (XLSA) due to loss of function mutations of ALAS2 include childhood-or adult-onset anaemia, ineffective erythropoiesis with formation of ring sideroblasts, iron accumulation and pyridoxine responsiveness. Porphyrias are due to altered activity of enzymes of this pathway and cause striking accumulations of pathway intermediates and their oxidised products. Erythropoietic porphyrias usually present in childhood and hepatic porphyrias during adult life. Of the three most common porphyrias, porphyria cutanea tarda (PCT) presents with chronic blistering photosensitiviry, acute intermittent porphyria (AIP) presents with acute neurovisceral symptoms that can be exacerbated by certain drugs, hormones and nutritional changes, and erythropoietic protoporphyria (EPP) with acute, nonblistering photosensitity. All porphyrias are inherited, with the exception of PCT, which is mostly due to an acquired enzyme deficiency in the liver.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Phillips JD, Anderson KE (2021) The Porphyrias (Chapter 59). In: Kaushansky K, Lichtman MA, Prchal JT et al (eds) Williams Hematology, 10th edn. McGraw-Hill, New York, pp 961–986

    Google Scholar 

  2. Harigae H, Furuyama K (2010) Hereditary sideroblastic anemia: pathophysiology and gene mutations. Int J Hematol 92(3):425–431

    Article  CAS  PubMed  Google Scholar 

  3. Campagna DR, de Bie CI, Schmitz-Abe K, Sweeney M, Sendamarai AK, Schmidt PJ et al (2014) X-linked sideroblastic anemia due to ALAS2 intron 1 enhancer element GATA-binding site mutations. Am J Hematol 89(3):315–319

    Article  CAS  PubMed  Google Scholar 

  4. Bekri S, May A, Cotter PD, Al-Sabah AI, Guo X, Masters GS et al (2003) A promoter mutation in the erythroid-specific 5-aminolevulinate synthase (ALAS2) gene causes X-linked sideroblastic anemia. Blood 102(2):698–704

    Article  CAS  PubMed  Google Scholar 

  5. Cazzola M, May A, Bergamaschi G, Cerani P, Ferrillo S, Bishop DF (2002) Absent phenotypic expression of X-linked sideroblastic anemia in one of 2 brothers with a novel ALAS2 mutation. Blood 100(12):4236–4238

    Article  CAS  PubMed  Google Scholar 

  6. Donker AE, Raymakers RA, Nieuwenhuis HK, Coenen MJ, Janssen MC, MacKenzie MA et al (2014) X-linked sideroblastic anaemia due to ALAS(2) mutations in the Netherlands: a disease in disguise. Neth J Med 72(4):210–217

    CAS  PubMed  Google Scholar 

  7. Sarkany RP (2008) Making sense of the porphyrias. Photodermatol Photoimmunol Photomed 24(2):102–108

    Article  CAS  PubMed  Google Scholar 

  8. Anderson KE, Bloomer JR, Bonkovsky HL, Kushner JP, Pierach CA, Pimstone NR et al (2005) Recommendations for the diagnosis and treatment of the acute porphyrias. Ann Intern Med 142(6):439–450

    Article  PubMed  Google Scholar 

  9. Gou EW, Balwani M, Bissell DM, Bloomer JR, Bonkovsky HL, Desnick RJ et al (2015) Pitfalls in erythrocyte protoporphyrin measurement for diagnosis and monitoring of protoporphyrias. Clin Chem 61(12):1453–1456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hift RJ, Davidson BP, van der Hooft C, Meissner DM, Meissner PN (2004) Plasma fluorescence scanning and fecal porphyrin analysis for the diagnosis of variegate porphyria: precise determination of sensitivity and specificity with detection of protoporphyrinogen oxidase mutations as a reference standard. Clin Chem 50(5):915–923

    Article  CAS  PubMed  Google Scholar 

  11. Lahiji AP, Anderson KE, Chan A, Simon A, Desnick RJ, Ramanujam VMS (2020) 5-Aminolevulinate dehydratase porphyria: update on hepatic 5-aminolevulinic acid synthase induction and long-term response to hemin. Mol Genet Metab 131:418–423

    Article  CAS  PubMed  Google Scholar 

  12. Neeleman RA, van Beers EJ, Friesema EC, Koole-Lesuis R, van der Pol WL, Wilson JHP et al (2019) Clinical remission of delta-aminolevulinic acid dehydratase deficiency through suppression of erythroid heme synthesis. Hepatology 70:434–436

    Article  PubMed  Google Scholar 

  13. Thunell S, Henrichson A, Floderus Y, Groth CG, Eriksson BG, Barkholt L et al (1992) Liver transplantation in a boy with acute porphyria due to aminolaevulinate dehydratase deficiency. Eur J Clin Chem Clin Biochem 30(10):599–606

    CAS  PubMed  Google Scholar 

  14. Bonkovsky HL, Maddukuri VC, Yazici C, Anderson KE, Bissell DM, Bloomer JR et al (2014) Acute porphyrias in the USA: features of 108 subjects from porphyrias consortium. Am J Med 127(12):1233–1241

    Article  PubMed  PubMed Central  Google Scholar 

  15. Yrjonen A, Pischik E, Mehtala S, Kauppinen R (2008) A novel 19-bp deletion of exon 15 in the HMBS gene causing acute intermittent porphyria associating with rhabdomyolysis during an acute attack. Clin Genet 74(4):396–398

    Article  CAS  PubMed  Google Scholar 

  16. Kazamel M, Desnick RJ, Quigley JG (2020) Porphyric neuropathy: pathophysiology, diagnosis, and updated management. Curr Neurol Neurosci Rep 20(12):56

    Article  PubMed  Google Scholar 

  17. Kevelam SH, Neeleman RA, Waisfisz Q, Friesema EC, Langendonk JG, van der Knaap MS (2016) Acute intermittent porphyria-related leukoencephalopathy. Neurology 87(12):1258–1265

    Article  CAS  PubMed  Google Scholar 

  18. Tchernitchko D, Tavernier Q, Lamoril J, Schmitt C, Talbi N, Lyoumi S et al (2017) A variant of peptide transporter 2 predicts the severity of porphyria-associated kidney disease. J Am Soc Nephrol 28(6):1924–1932

    Article  CAS  PubMed  Google Scholar 

  19. Saberi B, Naik H, Overbey JR, Erwin AL, Anderson KE, Bissell DM et al (2021) Hepatocellular carcinoma in acute hepatic porphyrias: results from the longitudinal study of the U.S. Porphyrias Consortium. Hepatology 73:1736–1746

    Article  PubMed  Google Scholar 

  20. Solis C, Martinez-Bermejo A, Naidich TP, Kaufmann WE, Astrin KH, Bishop DF et al (2004) Acute intermittent porphyria: studies of the severe homozygous dominant disease provides insights into the neurologic attacks in acute porphyrias. Arch Neurol 61(11):1764–1770

    Article  PubMed  Google Scholar 

  21. Whatley SD, Mason NG, Woolf JR, Newcombe RG, Elder GH, Badminton MN (2009) Diagnostic strategies for autosomal dominant acute porphyrias: retrospective analysis of 467 unrelated patients referred for mutational analysis of the HMBS, CPOX, or PPOX gene. Clin Chem 55(7):1406–1414

    Article  CAS  PubMed  Google Scholar 

  22. Willandt B, Langendonk JG, Biermann K, Meersseman W, D'Heygere F, George C et al (2016) Liver fibrosis associated with iron accumulation due to long-term heme-arginate treatment in acute intermittent porphyria: a case series. JIMD Rep 25:77–81

    Article  PubMed  Google Scholar 

  23. Frei P, Minder EI, Corti N, Muellhaupt B, Geier A, Adams H et al (2012) Liver transplantation because of acute liver failure due to heme arginate overdose in a patient with acute intermittent porphyria. Case Rep Gastroenterol 6(1):190–196

    Article  PubMed  PubMed Central  Google Scholar 

  24. Lissing M, Nowak G, Adam R, Karam V, Boyd A, Gouya L et al (2021) Liver transplantation for acute intermittent porphyria. Liver Transpl. 27(4):491–501

    Google Scholar 

  25. Balwani M, Wang B, Anderson KE, Bloomer JR, Bissell DM, Bonkovsky HL et al (2017) Acute hepatic porphyrias: recommendations for evaluation and long-term management. Hepatology 66(4):1314–1322

    Article  PubMed  Google Scholar 

  26. Marsden JT, Guppy S, Stein P, Cox TM, Badminton M, Gardiner T et al (2015) Audit of the use of regular haem arginate infusions in patients with acute porphyria to prevent recurrent symptoms. JIMD Rep 22:57–65

    Article  PubMed  PubMed Central  Google Scholar 

  27. Anderson KE, Spitz IM, Bardin CW, Kappas A (1990) A GnRH analogue prevents cyclical attacks of porphyria. Arch Intern Med 150:1469–1474

    Article  CAS  PubMed  Google Scholar 

  28. Schulenburg-Brand D, Gardiner T, Guppy S, Rees DC, Stein P, Barth J et al (2017) An audit of the use of gonadorelin analogues to prevent recurrent acute symptoms in patients with acute porphyria in the United Kingdom. JIMD Rep 36:99–107

    Article  PubMed  PubMed Central  Google Scholar 

  29. Balwani M, Sardh E, Ventura P, Peiro PA, Rees DC, Stolzel U et al (2020) Phase 3 trial of RNAi therapeutic givosiran for acute intermittent porphyria. N Engl J Med 382(24):2289–2301

    Article  CAS  PubMed  Google Scholar 

  30. Singal AK, Parker C, Bowden C, Thapar M, Liu L, McGuire BM (2014) Liver transplantation in the management of porphyria. Hepatology 60(3):1082–1089

    Article  PubMed  Google Scholar 

  31. Yasuda M, Erwin AL, Liu LU, Balwani M, Chen B, Kadirvel S et al (2015) Liver transplantation for acute intermittent porphyria: biochemical and pathologic studies of the explanted liver. Mol Med 21:487–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Verstraeten L, Van Regemorter N, Pardou A, De Verneuil H, Da Silva V, Rodesch F et al (1993) Biochemical diagnosis of a fatal case of Gunther’s disease in a newborn with hydrops-fetalis. Eur J Clin Chem Clin Biochem 31:121–128

    CAS  PubMed  Google Scholar 

  33. Katugampola RP, Badminton MN, Finlay AY, Whatley S, Woolf J, Mason N et al (2012) Congenital erythropoietic porphyria: a single-observer clinical study of 29 cases. Br J Dermatol 167(4):901–913

    Article  CAS  PubMed  Google Scholar 

  34. Sassa S, Akagi R, Nishitani C, Harigae H, Furuyama K (2002) Late-onset porphyrias: what are they? Cell Mol Biol (Noisy-le-Grand) 48(1):97–101

    CAS  Google Scholar 

  35. Ged C, Moreau-Gaudry F, Richard E, Robert-Richard E, de Verneuil H (2009) Congenital erythropoietic porphyria: mutation update and correlations between genotype and phenotype. Cell Mol Biol (Noisy-le-Grand) 55(1):53–60

    CAS  Google Scholar 

  36. Erwin AL, Desnick RJ (2019) Congenital erythropoietic porphyria: recent advances. Mol Genet Metab 128(3):288–297

    Article  CAS  PubMed  Google Scholar 

  37. To-Figueras J, Ducamp S, Clayton J, Badenas C, Delaby C, Ged C et al (2011) ALAS2 acts as a modifier gene in patients with congenital erythropoietic porphyria. Blood 118(6):1443–1451

    Article  CAS  PubMed  Google Scholar 

  38. Katugampola RP, Anstey AV, Finlay AY, Whatley S, Woolf J, Mason N et al (2012) A management algorithm for congenital erythropoietic porphyria derived from a study of 29 cases. Br J Dermatol 167(4):888–900

    Article  CAS  PubMed  Google Scholar 

  39. Guarini L, Piomelli S, Poh-Fitzpatrick MB (1994) Hydroxyurea in congenital erythropoietic porphyria (letter). New Engl J Med 330:1091–1092

    Article  CAS  PubMed  Google Scholar 

  40. Egan DN, Yang Z, Phillips J, Abkowitz JL (2015) Inducing iron deficiency improves erythropoiesis and photosensitivity in congenital erythropoietic porphyria. Blood 126(2):257–261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mirmiran A, Poli A, Ged C, Schmitt C, Lefebvre T, Manceau H et al (2021) Phlebotomy as an efficient long-term treatment of congenital erythropoietic porphyria. Haematologica 106:913–917

    Article  PubMed  Google Scholar 

  42. Besnard C, Schmitt C, Galmiche-Rolland L, Debray D, Fabre M, Molina T et al (2020) Bone marrow transplantation in congenital erythropoietic porphyria: sustained efficacy but unexpected liver dysfunction. Biol Blood Marrow Transplant 26(4):704–711

    Article  CAS  PubMed  Google Scholar 

  43. Urquiza P, Lain A, Sanz-Parra A, Moreno J, Bernardo-Seisdedos G, Dubus P et al (2018) Repurposing ciclopirox as a pharmacological chaperone in a model of congenital erythropoietic porphyria. Sci Transl Med 10(459):eaat7467

    Article  PubMed  Google Scholar 

  44. Blouin JM, Bernardo-Seisdedos G, Sasso E, Esteve J, Ged C, Lalanne M et al (2017) Missense UROS mutations causing congenital erythropoietic porphyria reduce UROS homeostasis that can be rescued by proteasome inhibition. Hum Mol Genet 26(8):1565–1576

    Article  CAS  PubMed  Google Scholar 

  45. Geronimi F, Richard E, Lamrissi-Garcia I, Lalanne M, Ged C, Redonnet-Vernhet I et al (2003) Lentivirus-mediated gene transfer of uroporphyrinogen III synthase fully corrects the porphyric phenotype in human cells. J Mol Med 81(5):310–320

    Article  CAS  PubMed  Google Scholar 

  46. Robert-Richard E, Lalanne M, Lamrissi-Garcia I, Guyonnet-Duperat V, Richard E, Pitard V et al (2010) Modeling of congenital erythropoietic porphyria by RNA interference: a new tool for preclinical gene therapy evaluation. J Gene Med 12(8):637–646

    CAS  PubMed  Google Scholar 

  47. Elder GH (2003) Porphyria cutanea tarda and related disorders (Chapter 88). In: Kadish KM, Smith K, Guilard R (eds) Porphyrin handbook, part II. Academic Press, San Diego, pp 67–92

    Chapter  Google Scholar 

  48. Jalil S, Grady JJ, Lee C, Anderson KE (2010) Associations among behavior-related susceptibility factors in porphyria cutanea tarda. Clin Gastroenterol Hepatol 8(3):297–302

    Article  PubMed  Google Scholar 

  49. Phillips JD, Bergonia HA, Reilly CA, Franklin MR, Kushner JP (2007) A porphomethene inhibitor of uroporphyrinogen decarboxylase causes porphyria cutanea tarda. Proc Natl Acad Sci U S A 104(12):5079–5084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Weiss Y, Chen B, Yasuda M, Nazarenko I, Anderson KE, Desnick RJ (2019) Porphyria cutanea tarda and hepatoerythropoietic porphyria: identification of 19 novel uroporphyrinogen III decarboxylase mutations. Mol Genet Metab 128(3):363–366

    Article  CAS  PubMed  Google Scholar 

  51. Day RS, Eales L, Meissner D (1982) Coexistent variegate porphyria and porphyria cutanea tarda. N Engl J Med 30:36–41

    Article  Google Scholar 

  52. Singal AK, Kormos-Hallberg C, Lee C, Sadagoparamanujam VM, Grady JJ, Freeman DH Jr et al (2012) Low-dose hydroxychloroquine is as effective as phlebotomy in treatment of patients with porphyria cutanea tarda. Clin Gastroenterol Hepatol 10(12):1402–1409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Armstrong DK, Sharpe PC, Chambers CR, Whatley SD, Roberts AG, Elder GH (2004) Hepatoerythropoietic porphyria: a missense mutation in the UROD gene is associated with mild disease and an unusual porphyrin excretion pattern. Br J Dermatol 151(4):920–923

    Article  CAS  PubMed  Google Scholar 

  54. Hift RJ, Meissner D, Meissner PN (2004) A systematic study of the clinical and biochemical expression of variegate porphyria in a large South African family. Br J Dermatol 151(2):465–471

    Article  CAS  PubMed  Google Scholar 

  55. Moghe A, Ramanujam VMS, Phillips JD, Desnick RJ, Anderson KE (2019) Harderoporphyria: case of lifelong photosensitivity associated with compound heterozygous coproporphyrinogen oxidase (CPOX) mutations. Mol Genet Metab Rep 19:100457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Meissner P, Adams P, Kirsch R (1993) Allosteric inhibition of human lymphoblast and purified porphobilinogen deaminase by protoporphyrinogen and coproporphyrinogen. A possible mechanism for the acute attack of variegate porphyria. J Clin Invest 91(4):1436–1444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Balwani M, Naik H, Anderson KE, Bissell DM, Bloomer J, Bonkovsky HL et al (2017) Clinical, biochemical, and genetic characterization of North American patients with erythropoietic protoporphyria and X-linked protoporphyria. JAMA Dermatol 153(8):789–796

    Article  PubMed  PubMed Central  Google Scholar 

  58. Holme SA, Worwood M, Anstey AV, Elder GH, Badminton MN (2007) Erythropoiesis and iron metabolism in dominant erythropoietic protoporphyria. Blood 110(12):4108–4110

    Article  CAS  PubMed  Google Scholar 

  59. Holme SA, Anstey AV, Finlay AY, Elder GH, Badminton MN (2006) Erythropoietic protoporphyria in the U.K.: clinical features and effect on quality of life. Br J Dermatol 155(3):574–581

    Article  CAS  PubMed  Google Scholar 

  60. Muley SA, Midani HA, Rank JM, Carithers R, Parry GJ (1998) Neuropathy in erythropoietic protoporphyrias. Neurology 51(1):262–265

    Article  CAS  PubMed  Google Scholar 

  61. Whatley SD, Mason NG, Holme SA, Anstey AV, Elder GH, Badminton MN (2010) Molecular epidemiology of erythropoietic protoporphyria in the United Kingdom. Br J Dermatol 162(3):642–646

    Article  CAS  PubMed  Google Scholar 

  62. Balwani M, Doheny D, Bishop DF, Nazarenko I, Yasuda M, Dailey HA et al (2013) Loss-of-function ferrochelatase and gain-of-function erythroid-specific 5-aminolevulinate synthase mutations causing erythropoietic protoporphyria and X-linked protoporphyria in North American patients reveal novel mutations and a high prevalence of X-linked protoporphyria. Mol Med 19(1):26–35

    Article  PubMed  PubMed Central  Google Scholar 

  63. Weiss Y, Balwani M, Chen B, Yasuda M, Nazarenko I, Desnick RJ (2019) Congenital erythropoietic porphyria and erythropoietic protoporphyria: identification of 7 uroporphyrinogen III synthase and 20 ferrochelatase novel mutations. Mol Genet Metab 128:358–362

    Article  CAS  PubMed  Google Scholar 

  64. Gouya L, Puy H, Lamoril J, Da Silva V, Grandchamp B, Nordmann Y et al (1999) Inheritance in erythropoietic protoporphyria: a common wild-type ferrochelatase allelic variant with low expression accounts for clinical manifestation. Blood 93(6):2105–2110

    Article  CAS  PubMed  Google Scholar 

  65. Holme SA, Whatley SD, Roberts AG, Anstey AV, Elder GH, Ead RD et al (2009) Seasonal palmar keratoderma in erythropoietic protoporphyria indicates autosomal recessive inheritance. J Invest Dermatol 129(3):599–605

    Article  CAS  PubMed  Google Scholar 

  66. Goodwin RG, Kell WJ, Laidler P, Long CC, Whatley SD, McKinley M et al (2006) Photosensitivity and acute liver injury in myeloproliferative disorder secondary to late-onset protoporphyria caused by deletion of a ferrochelatase gene in hematopoietic cells. Blood 107(1):60–62

    Article  CAS  PubMed  Google Scholar 

  67. Yien YY, Ducamp S, van der Vorm LN, Kardon JR, Manceau H, Kannengiesser C et al (2017) Mutation in human CLPX elevates levels of delta-aminolevulinate synthase and protoporphyrin IX to promote erythropoietic protoporphyria. Proc Natl Acad Sci U S A 114:E8045–E8052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Poh-Fitzpatrick MB, DeLeo VA (1977) Rates of plasma porphyrin disappearance in fluorescent vs. red incandescent light exposure. J Invest Dermatol 69(6):510–512

    Article  CAS  PubMed  Google Scholar 

  69. Langendonk JG, Balwani M, Anderson KE, Bonkovsky HL, Anstey AV, Bissell DM et al (2015) Afamelanotide for erythropoietic protoporphyria. N Engl J Med 373(1):48–59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Landefeld C, Kentouche K, Gruhn B, Stauch T, Rossler S, Schuppan D et al (2016) X-linked protoporphyria: iron supplementation improves protoporphyrin overload, liver damage and anaemia. Br J Haematol 173(3):482–484

    Article  PubMed  Google Scholar 

  71. Barman-Aksozen J, Minder EI, Schubiger C, Biolcati G, Schneider-Yin X (2015) In ferrochelatase-deficient protoporphyria patients, ALAS2 expression is enhanced and erythrocytic protoporphyrin concentration correlates with iron availability. Blood Cells Mol Dis 54(1):71–77

    Article  CAS  PubMed  Google Scholar 

  72. Bentley DP, Meek EM (2013) Clinical and biochemical improvement following low-dose intravenous iron therapy in a patient with erythropoietic protoporphyria. Br J Haematol 163(2):289–291

    Article  PubMed  PubMed Central  Google Scholar 

  73. Yoshioka A, Fujiwara S, Kawano H, Nakano H, Taketani S, Matsui T et al (2018) Late-onset erythropoietic protoporphyria associated with myelodysplastic syndrome treated with azacitidine. Acta Derm Venereol 98(2):275–277

    Article  CAS  PubMed  Google Scholar 

  74. Rand EB, Bunin N, Cochran W, Ruchelli E, Olthoff KM, Bloomer JR (2006) Sequential liver and bone marrow transplantation for treatment of erythropoietic protoporphyria. Pediatrics 118(6):e1896–e1899

    Article  PubMed  Google Scholar 

  75. Richard E, Robert-Richard E, Ged C, Moreau-Gaudry F, de Verneuil H (2008) Erythropoietic porphyrias: animal models and update in gene-based therapies. Curr Gene Ther 8(3):176–186

    Article  CAS  PubMed  Google Scholar 

  76. Mirmiran A, Schmitt C, Lefebvre T, Manceau H, Daher R, Oustric V et al (2019) Erythroid-progenitor-targeted gene therapy using bifunctional TFR1 ligand-peptides in human erythropoietic protoporphyria. Am J Hum Genet 104(2):341–347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Barman-Aksozen J, Beguin C, Dogar AM, Schneider-Yin X, Minder EI (2013) Iron availability modulates aberrant splicing of ferrochelatase through the iron- and 2-oxoglutarate dependent dioxygenase Jmjd6 and U2AF(65.). Blood Cells Mol Dis 51(3):151–161

    Article  CAS  PubMed  Google Scholar 

  78. Parker CJ, Desnick RJ, Bissel MD, Bloomer JR, Singal A, Gouya L et al (2019) Results of a pilot study of isoniazid in patients with erythropoietic protoporphyria. Mol Genet Metab 128(3):309–313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl E. Anderson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lourenço, C.M., Anderson, K.E. (2022). Disorders of Haem Biosynthesis. In: Saudubray, JM., Baumgartner, M.R., García-Cazorla, Á., Walter, J. (eds) Inborn Metabolic Diseases. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-63123-2_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-63123-2_33

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-63122-5

  • Online ISBN: 978-3-662-63123-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics