Skip to main content

Hopf Algebra Relativistic Symmetries: The \(\kappa \)-Poincaré Algebra

  • Chapter
  • First Online:
Deformations of Spacetime Symmetries

Part of the book series: Lecture Notes in Physics ((LNP,volume 986))

  • 600 Accesses

Abstract

In the first part of this book, we argued that if one takes into account self-gravity effects, a particle becomes dressed with topological degrees of freedom of its own gravitational field so that its kinematics becomes deformed. This results in the energy and momentum of the particle being described by elements of a non-abelian Lie group. In this chapter, we turn to mathematics describing this deformation. The first step will be the introduction of some key notions in the theory of Hopf algebras and their relevance in physical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For massless particles denoting their states with \(|\mathbf {p}, h\rangle \) one has

    $$\begin{aligned} W^{\mu } W_{\mu } |\mathbf {p}, h\rangle = W^{\mu } P_{\mu } |\mathbf {p}, h\rangle = P^{\mu } P_{\mu } |\mathbf {p}, h\rangle = 0\,. \end{aligned}$$
    (5.52)

    Since \(W^{\mu }\) is null on physical states and orthogonal to \(P^{\mu }\) it must be proportional to the latter, i.e.

    $$\begin{aligned} W^{\mu } |\mathbf {p}, h\rangle = h\, P^{\mu } |\mathbf {p}, h\rangle \,, \end{aligned}$$
    (5.53)

    and the proportionality factor h is just the helicity of the particle with the helicity operator given by

    $$\begin{aligned} \hat{h} = - \frac{\mathbf {P}\cdot \mathbf {J}}{|\mathbf {P}|}\,. \end{aligned}$$
    (5.54)

References

  1. Reed, M., Simon, B.: Methods of Modern Mathematical Physics. 1. Functional Analysis. Academic Press, New York (1972)

    Google Scholar 

  2. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Rev. Mod. Phys. 81, 865–942 (2009). arXiv:quant-ph/0702225 [quant-ph]

  3. Cook, J.M.: The mathematics of second quantization. Proc. Nat. Acad. Sci. U. S. A. 37, 417–420 (1951). ISSN 0027-8424

    Google Scholar 

  4. Humphreys, J.E.: Introduction to Lie Algebras and Representation Theory, 171p. Springer, New York, USA (1980)

    Google Scholar 

  5. Wald, R.M.: Quantum Field Theory in Curved Space-Time and Black Hole Thermodynamics, 205p. University Press, Chicago, USA (1994)

    Google Scholar 

  6. Geroch, R.P.: Quantum Field Theory: 1971 Lecture Notes. Minkowski Institute Press, Montreal (2013)

    Google Scholar 

  7. Geroch, R.P.: Mathematical Physics. The University of Chicago Press (1985)

    Google Scholar 

  8. Fuchs, J., Schweigert, C.: Symmetries, Lie algebras and representations: a graduate course for physicists. Cambridge Monographs on Mathematical Physics (2003)

    Google Scholar 

  9. Majid, S.: Foundations of Quantum Group Theory. Cambridge University Press (1996)

    Google Scholar 

  10. Kowalski-Glikman, J., Nowak, S.: Doubly special relativity and de Sitter space. Class. Quant. Grav. 20, 4799–4816 (2003). arXiv:hep-th/0304101 [hep-th]

  11. Amelino-Camelia, G.: Quantum-spacetime phenomenology. Living Rev. Rel. 16, 5 (2013). arXiv:0806.0339 [gr-qc]

  12. Hossenfelder, S.: Minimal length scale scenarios for quantum gravity. Living Rev. Rel. 16, 2 (2013). arXiv:1203.6191 [gr-qc]

  13. Corley, S., Jacobson, T.: Hawking spectrum and high frequency dispersion. Phys. Rev. D 54, 1568–1586 (1996). arXiv:hep-th/9601073 [hep-th]

  14. Brandenberger, R.H.: Lectures on the theory of cosmological perturbations. Lect. Notes Phys. 646, 127–167 (2004). arXiv:hep-th/0306071 [hep-th]

  15. Abraham, R., Marsden, J.E.: Foundation of Mechanics. Benjamin/Cummings Publishing Company (1978)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Arzano .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer-Verlag GmbH, DE, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Arzano, M., Kowalski-Glikman, J. (2021). Hopf Algebra Relativistic Symmetries: The \(\kappa \)-Poincaré Algebra. In: Deformations of Spacetime Symmetries. Lecture Notes in Physics, vol 986. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-63097-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-63097-6_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-63095-2

  • Online ISBN: 978-3-662-63097-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics