Skip to main content

Invitation: Gravity, Point Particles, and Group-Valued Momenta

  • Chapter
  • First Online:
Deformations of Spacetime Symmetries

Part of the book series: Lecture Notes in Physics ((LNP,volume 986))

  • 601 Accesses

Abstract

The growth of our understanding of physics of the fundamental constituents of matter in the last century is truly remarkable. Hundred years ago, general relativity had been just formulated, and the researchers still had to wait to witness the dawn of quantum mechanics, to mention only these two major theories that shaped the development of physics ever since.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Since the value of the deformation parameter is to be derived from some fundamental theory and/or experiments, in what follows we will use \(\kappa \) to denote the deformation parameter, whose value is not fixed, while the term ‘Planck mass’ will refer to \(M_{Pl} =\sqrt{\hslash /G} \sim 10^{19}\) GeV.

  2. 2.

    In the recent years, Born’s ideas found their new incarnations in investigations of new mathematical structures in symplectic geometry (see [30] and references therein) and in a new model in string theory, called the metastring theory [31,32,33,34,35].

  3. 3.

    As cited in [38].

  4. 4.

    In this book, we use the units in which \(c=1\).

  5. 5.

    It is worth noticing in passing that also in 3+1 dimensions the Einstein equations make the components of the Ricci tensor completely fixed by the distribution of matter. Therefore, all the dynamical degrees of freedom of gravity are captured by the Weyl tensor \(C_{\mu \nu \rho \sigma }\).

  6. 6.

    We will consider spinning particles in the next chapter. Let us remark here that a non-vanishing spin of the point particle is associated to a time-offset in the conical geometry. See, e.g., [47] for details.

  7. 7.

    For the technical details about the procedure of boosting a conical defect, see [45].

References

  1. Rovelli, C.: Unfinished revolution. In: Oriti, D. (Ed.) Approaches to Quantum Gravity. Cambridge University Press (2009). arXiv:gr-qc/0604045

  2. Amelino-Camelia, G.: Are we at the dawn of quantum gravity phenomenology? Lect. Notes Phys. 541, 1 (2000). arXiv:gr-qc/9910089

  3. Dyson, F.: Is a graviton detectable? Int. J. Mod. Phys. A 28, 1330041 (2013)

    Article  ADS  Google Scholar 

  4. Vasileiou, V., Granot, J., Piran, T., Amelino-Camelia, G.: A Planck-scale limit on spacetime fuzziness and stochastic Lorentz invariance violation. Nat. Phys.

    Google Scholar 

  5. Mattingly, D.: Modern tests of Lorentz invariance. Living Rev. Rel. 8, 5 (2005). arXiv:gr-qc/0502097

  6. Liberati, S., Mattingly, D.: Lorentz breaking effective field theory models for matter and gravity: theory and observational constraints. arXiv:1208.1071 [gr-qc]

  7. Bluhm, R.: Observational Constraints on Local Lorentz Invariance. arXiv:1302.1150 [hep-ph]

  8. Amelino-Camelia, G.: Testable scenario for relativity with minimum length. Phys. Lett. B 510, 255 (2001). arXiv:hep-th/0012238

  9. Amelino-Camelia, G.: Relativity in space-times with short distance structure governed by an observer independent (Planckian) length scale. Int. J. Mod. Phys. D 11, 35 (2002). arXiv:gr-qc/0012051

  10. Kowalski-Glikman, J.: Observer independent quantum of mass. Phys. Lett. A 286, 391 (2001). arXiv:hep-th/0102098

  11. Bruno, N.R., Amelino-Camelia, G., Kowalski-Glikman, J.: Deformed boost transformations that saturate at the Planck scale. Phys. Lett. B 522, 133 (2001). arXiv:hep-th/0107039

  12. Magueijo, J., Smolin, L.: Lorentz invariance with an invariant energy scale. Phys. Rev. Lett. 88, 190403 (2002). arXiv:hep-th/0112090

  13. Magueijo, J., Smolin, L.: Generalized Lorentz invariance with an invariant energy scale. Phys. Rev. D 67, 044017 (2003). arXiv:gr-qc/0207085

  14. Kowalski-Glikman, J.: Introduction to doubly special relativity. Lect. Notes Phys. 669, 131 (2005). arXiv:hep-th/0405273

  15. Kowalski-Glikman, J.: Doubly special relativity: facts and prospects. In: Oriti, D. (Ed.) Approaches to Quantum Gravity. Cambridge University Press (2009). arXiv:gr-qc/0603022

  16. Amelino-Camelia, G.: Doubly-special relativity: facts, myths and some key open issues. Symmetry 2, 230 (2010). arXiv:1003.3942 [gr-qc]

  17. Lukierski, J., Ruegg, H., Nowicki, A., Tolstoi, V.N.: Q deformation of Poincaré algebra. Phys. Lett. B 264, 331 (1991)

    Google Scholar 

  18. Lukierski, J., Nowicki, A., Ruegg, H.: New quantum Poincaré algebra and k deformed field theory. Phys. Lett. B 293, 344 (1992)

    Google Scholar 

  19. Lukierski, J., Ruegg, H., Zakrzewski, W.J.: Classical quantum mechanics of free kappa relativistic systems. Ann. Phys. 243, 90 (1995). arXiv:hep-th/9312153

  20. Majid, S., Ruegg, H.: Bicrossproduct structure of kappa Poincaré group and noncommutative geometry. Phys. Lett. B 334, 348 (1994). arXiv:hep-th/9405107

  21. Hossenfelder, S.: Bounds on an energy-dependent and observer-independent speed of light from violations of locality. Phys. Rev. Lett. 104, 140402 (2010). arXiv:1004.0418 [hep-ph]

  22. Amelino-Camelia, G., Matassa, M., Mercati, F., Rosati, G.: Taming nonlocality in theories with Planck-Scale deformed Lorentz symmetry. Phys. Rev. Lett. 106, 071301 (2011). arXiv:1006.2126 [gr-qc]

  23. Smolin, L.: Classical paradoxes of locality and their possible quantum resolutions in deformed special relativity. Gen. Rel. Grav. 43, 3671 (2011). arXiv:1004.0664 [gr-qc]

  24. Amelino-Camelia, G., Freidel, L., Kowalski-Glikman, J., Smolin, L.: The principle of relative locality. Phys. Rev. D 84, 084010 (2011). arXiv:1101.0931 [hep-th]

  25. Amelino-Camelia, G., Freidel, L., Kowalski-Glikman, J., Smolin, L.: Relative locality: a deepening of the relativity principle. Gen. Rel. Grav. 43, 2547 (2011) [Int. J. Mod. Phys. D 20, 2867 (2011)]. arXiv:1106.0313 [hep-th]

  26. Born, M.: A suggestion for unifying quantum theory and relativity. Proc. R. Soc. Lond. A 165, 291 (1938)

    Google Scholar 

  27. Snyder, H.S.: Quantized space-time. Phys. Rev. 71, 38 (1947)

    Article  MathSciNet  ADS  Google Scholar 

  28. Hossenfelder, S.: Minimal Length Scale Scenarios for Quantum Gravity. arXiv:1203.6191 [gr-qc]

  29. Kadyshevsky, V.G., Mateev, M.D., Mir-Kasimov, R.M., Volobuev, I.P.: Equations of motion for the scalar and the spinor fields in four-dimensional noneuclidean momentum space. Theor. Math. Phys. 40, 800 (1979) [Teor. Mat. Fiz. 40, 363 (1979)]

    Google Scholar 

  30. Freidel, L., Rudolph, F.J., Svoboda, D.: A unique connection for Born geometry. Commun. Math. Phys. 372(1), 119–150 (2019). https://doi.org/10.1007/s00220-019-03379-7, arXiv:1806.05992 [hep-th]

  31. Freidel, L., Leigh, R.G., Minic, D.: Born reciprocity in string theory and the nature of spacetime. Phys. Lett. B 730, 302 (2014). arXiv:1307.7080

  32. Freidel, L., Leigh, R.G., Minic, D.: Quantum gravity, dynamical phase space and string theory. Int. J. Mod. Phys. D 23(12), 1442006 (2014). arXiv:1405.3949 [hep-th]

  33. Freidel, L., Leigh, R.G., Minic, D.: Metastring theory and modular space-time. JHEP 06, 006 (2015). https://doi.org/10.1007/JHEP06(2015)006, arXiv:1502.08005 [hep-th]

  34. Freidel, L., Leigh, R.G., Minic, D.: Phys. Rev. D 94(10), 104052 (2016). https://doi.org/10.1103/PhysRevD.94.104052, arXiv:1606.01829 [hep-th]

  35. Freidel, L., Kowalski-Glikman, J., Leigh, R.G., Minic, D.: Theory of metaparticles. Phys. Rev. D 99(6), 066011 (2019). https://doi.org/10.1103/PhysRevD.99.066011, arXiv:1812.10821 [hep-th]

  36. Kowalski-Glikman, J.: De sitter space as an arena for doubly special relativity. Phys. Lett. B 547, 291 (2002). arXiv:hep-th/0207279

  37. Kowalski-Glikman, J., Nowak, S.: Doubly special relativity and de Sitter space. Class. Quant. Grav. 20, 4799 (2003). arXiv:hep-th/0304101

  38. Milnor, J.: Hyperbolic geometry: the first 150 years. Bull. Am. Math. Soc. 6, 9 (1982)

    Article  MathSciNet  Google Scholar 

  39. Girelli, F., Livine, E.R.: Special relativity as a non commutative geometry: lessons for deformed special relativity. Phys. Rev. D 81, 085041 (2010). arXiv:gr-qc/0407098

  40. Girelli, F., Livine, E.R., Oriti, D.: Deformed special relativity as an effective flat limit of quantum gravity. Nucl. Phys. B 708, 411 (2005). arXiv:gr-qc/0406100

  41. ’t Hooft, G.: Graviton dominance in ultrahigh-energy scattering. Phys. Lett. B 198, 61 (1987)

    Google Scholar 

  42. Verlinde, H.L., Verlinde, E.P.: Scattering at Planckian energies. Nucl. Phys. B 371, 246 (1992). arXiv:hep-th/9110017

  43. Carlip, S.: Quantum Gravity in 2+1 Dimensions, 276p. University Press, Cambridge, UK (1998)

    Google Scholar 

  44. Staruszkiewicz, A.: Acta Phys. Polon. 24, 735 (1963)

    MathSciNet  Google Scholar 

  45. van de Meent, M.: Piecewise Flat Gravity in 3+1 Dimensions. arXiv:1111.6468 [gr-qc]

  46. Matschull, H.-J., Welling, M.: Quantum mechanics of a point particle in (2+1)-dimensional gravity. Class. Quant. Grav. 15, 2981 (1998). arXiv:gr-qc/9708054

  47. de Sousa Gerbert, P.: On spin and (quantum) gravity in (2+1)-dimensions. Nucl. Phys. B 346, 440 (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Arzano .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer-Verlag GmbH, DE, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Arzano, M., Kowalski-Glikman, J. (2021). Invitation: Gravity, Point Particles, and Group-Valued Momenta. In: Deformations of Spacetime Symmetries. Lecture Notes in Physics, vol 986. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-63097-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-63097-6_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-63095-2

  • Online ISBN: 978-3-662-63097-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics