Zusammenfassung
Oftmals wird die Weinbranche in nördlichen Weinanbaugebieten, wie in Hessen der Rheingau und die Hessische Bergstraße, als pauschaler Gewinner des Klimawandels dargestellt. Durch den Klimawandel aber ist die Weinbranche auch in kühleren Regionen zunehmend vor eine Reihe von unterschiedlichsten Herausforderungen gestellt.
Nicht nur steigende Durchschnittstemperaturen, sondern auch zunehmende Wetterextreme und die Veränderung der Niederschlagsverteilung, haben einen weitreichenden Einfluss auf den Weinbau und die nachfolgende Weinbereitung.
Diese verschiedenen klimatischen Veränderungen beeinflussen jedes Jahr in unterschiedlicher Weise den Weinbau und die Weinproduktion. Im folgenden Kapitel soll anhand verschiedener Beispiele der hessischen Weinanbaugebiete dargelegt werden, warum der Klimawandel kein Selbstläufer für die dortige Weinbranche ist, und warum man zukünftig weitere innovative sowie vernetzte Handlungskonzepte entlang der Weinproduktion braucht, um den Folgen des Klimawandels zu begegnen, um weiterhin jedes Jahr Weine von hoher Qualität produzieren zu können.
This is a preview of subscription content, access via your institution.
Buying options
Literatur
Alston JM, Fuller KB, Lapsley JT, Soleas G, Tumber KP (2015) Splendide mendax: false label claims about high and rising alcohol content of wine. J Wine Econ 10(3):275–313. https://doi.org/10.1017/jwe.2015.33
Amerine MA, Winkler AJ (1944) Composition and quality of musts and wines of california grapes. Hilg 15(6):493–675. https://doi.org/10.3733/hilg.v15n06p493
Bach H-P, Troost G, Rhein OH (2010) Sekt, Schaumwein, Perlwein, 3., völlig neu bearb. Aufl. Ulmer, Stuttgart (Handbuch der Lebensmitteltechnologie)
Bisson LF (1999) Stuck and sluggish fermentations. Am J Enol Vitic 50(1):107
Blank M, Hofmann M, Stoll M (2019) Seasonal differences in Vitis vinifera L. cv. Pinot noir fruit and wine quality in relation to climate. OENO One 53(2). https://doi.org/10.20870/oeno-one.2019.53.2.2427
Boulton R (1980) The relationships between total acidity, titratable acidity and pH in wine. Am J Enol Vitic 31(1):76–80. https://www.ajevonline.org/content/ajev/31/1/76.full.pdf
Brasseur GP, Jacob D, Schuck-Zöller S (2017) Klimawandel in Deutschland. Springer, Berlin
Catrini P, Panno D, Cardona F, Piacentino A (2020) Characterization of cooling loads in the wine industry and novel seasonal indicator for reliable assessment of energy saving through retrofit of chillers. Appl Energy 266:114856. https://doi.org/10.1016/j.apenergy.2020.114856
Contreras A, Hidalgo C, Henschke PA, Chambers PJ, Curtin C, Varela C (2014) Evaluation of non-Saccharomyces yeasts for the reduction of alcohol content in wine. Appl Environ Microbiol 80(5):1670–1678. https://doi.org/10.1128/AEM.03780-13
Duchêne E, Huard F, Dumas V, Schneider C, Merdinoglu D (2010) The challenge of adapting grapevine varieties to climate change. Clim Res 41(3):193–204. https://doi.org/10.3354/cr00850
Ellison P, Ash G, McDonald C (1998) An expert system for the management of Botrytis cinerea in Australian vineyards. I. Development. Agric Syst 56(2):185–207. https://doi.org/10.1016/S0308-521X(97)00035-8
Fraga H, Malheiro AC, Moutinho-Pereira J, Santos JA (2012) An overview of climate change impacts on European viticulture. Food Energy Secur 1(2):94–110. https://doi.org/10.1002/fes3.14
Garofalo C, Arena M, Laddomada B, Cappello M, Bleve G, Grieco F et al (2016) Starter cultures for sparkling wine. Fermentation 2(4):21. https://doi.org/10.3390/fermentation2040021
Greer DH, Weston C (2010) Heat stress affects flowering, berry growth, sugar accumulation and photosynthesis of Vitis vinifera cv. Semillon grapevines grown in a controlled environment. Funct Plant Biol 37(3):206. https://doi.org/10.1071/FP09209
Heinrichs H, Grunenberg H (2009) Klimawandel und Gesellschaft. Perspektive Adaptionskommunikation, 1. Aufl. VS Verlag, Wiesbaden. http://fox.leuphana.de/portal/de/publications/klimawandel-und-gesellschaft(3ac7a54f-d7a4-4d6e-9a74-010ba647357e).html
Ioriatti C, Walton V, Dalton D, Anfora G, Grassi A, Maistri S, Mazzoni V (2015) Drosophila suzukii (Diptera: Drosophilidae) and its potential impact to wine grapes during harvest in two cool climate wine grape production regions. J Econ Entomol 108(3):1148–1155. https://doi.org/10.1093/jee/tov042
Jones GV, Davis RE (2000) Climate influences on grapevine phenology, grape composition, and wine production and quality for bordeaux, France. Am J Enol Vitic 51(3):249–261. https://www.ajevonline.org/content/ajev/51/3/249.full.pdf
Jones GV, White MA, Cooper OR, Storchmann K (2005) Climate change and global wine quality. Clim Change 73(3):319–343. https://doi.org/10.1007/s10584-005-4704-2
Lorenzo MN, Taboada JJ, Lorenzo JF, Ramos AM (2013) Influence of climate on grape production and wine quality in the Rías Baixas, north-western Spain. Reg Environ Change 13(4):887–896. https://doi.org/10.1007/s10113-012-0387-1
Marx W, Haunschild R, Bornmann L (2017) Climate change and viticulture – a quantitative analysis of a highly dynamic research field. 35–43 Pages: Vitis/VITIS – Journal of Grapevine Research, Vol 56, No 1 (2017): Vitis. https://doi.org/10.5073/vitis.2017.56.35-43
Meillon S, Viala D, Medel M, Urbano C, Guillot G, Schlich P (2010) Impact of partial alcohol reduction in Syrah wine on perceived complexity and temporality of sensations and link with preference. Food Qual Prefer 21(7):732–740. https://doi.org/10.1016/j.foodqual.2010.06.005
Mira de Orduña R (2010) Climate change associated effects on grape and wine quality and production. Food Res Int 43(7):1844–1855. https://doi.org/10.1016/j.foodres.2010.05.001
Möhring N, Wuepper D, Musa T, Finger R (2020) Why farmers deviate from recommended pesticide timing: the role of uncertainty and information. Pest Manag Sci 76(8):2787–2798. https://doi.org/10.1002/ps.5826
Moisselin J-M, Schneider M, Canellas C (2002) Les changements climatiques en France au XXè siècle. Etude des longues séries homogénéisées de données de température et de précipitations. Météorologie 8(38):45. https://doi.org/10.4267/2042/36233
Molitor D, Caffarra A, Sinigoj P, Pertot I, Hoffmann L, Junk J (2014) Late frost damage risk for viticulture under future climate conditions: a case study for the Luxembourgish winegrowing region. Aust J Grape Wine Res 20(1):160–168. https://doi.org/10.1111/ajgw.12059
Otteneder H, Majerus P (2000) Occurrence of ochratoxin A (OTA) in wines: influence of the type of wine and its geographical origin. Food Addit Contam 17(9):793–798. https://doi.org/10.1080/026520300415345
Pagay V, Kidman CM (2019) Evaluating remotely-sensed grapevine (Vitis vinifera L.) water stress responses across a viticultural region. Agronomy 9(11):682. https://doi.org/10.3390/agronomy9110682
Parker L, Bourgoin C, Martinez-Valle A, Läderach P (2019) Vulnerability of the agricultural sector to climate change: the development of a pan-tropical climate risk vulnerability assessment to inform sub-national decision making. PLoS One 14(3):e0213641. https://doi.org/10.1371/journal.pone.0213641
Poling EB (2008) Spring cold injury to winegrapes and protection strategies and methods. horts 43(6):1652–1662. https://doi.org/10.21273/HORTSCI.43.6.1652
Pons A, Allamy L, Schüttler A, Rauhut D, Thibon C, Darriet P (2017) What is the expected impact of climate change on wine aroma compounds and their precursors in grape? OENO One 51(2–3):141–146
Ribéreau-Gayon P (2007) Handbook of enology, 2. Aufl. Wiley, Chichester
Röcker J, Schmitt M, Pasch L, Ebert K, Grossmann M (2016a) The use of glucose oxidase and catalase for the enzymatic reduction of the potential ethanol content in wine. Food Chem 210:660–670. https://doi.org/10.1016/j.foodchem.2016.04.093
Röcker J, Strub S, Ebert K, Grossmann M (2016b) Usage of different aerobic non-Saccharomyces yeasts and experimental conditions as a tool for reducing the potential ethanol content in wines. Eur Food Res Technol 242(12):2051–2070. https://doi.org/10.1007/s00217-016-2703-3
Rodrigo Comino J, Brings C, Lassu T, Iserloh T, Senciales JM, Martínez Murillo JF et al (2015) Rainfall and human activity impacts on soil losses and rill erosion in vineyards (Ruwer Valley, Germany). Solid Earth Discuss 7(1):259–299. https://doi.org/10.5194/sed-7-259-2015
Schaefer V (2014) Untersuchungen zum Auftreten dumpf-muffiger Fehltöne im Wein. Untersuchungen zum Auftreten, der Herkunft, Behandlung und Vermeidung sensorisch wirksamer, dumpf-muffiger Fehltöne im Wein, die durch Trauben, Weinbearbeitung, Schönung, Weinbehandlung und Abfüllen verursacht werden können. Geisenheim: Ges. zur Förderung der Hochsch. Gesellschaft zur Förderung der Hochschule, Geisenheim (Geisenheimer Berichte, Bd. 74)
Schenk C (2018) Modeling, simulation and optimization of wine fermentation. Gesellschaft zur Förderung der Hochschule, Geisenheim
Schmitt M (2016) Teilweise Alkoholreduzierung von Wein mittels physikalischer Verfahren – Alkoholmanagement. Gesellschaft zur Förderung der Hochschule Geisenheim, Geisenheim (Geisenheimer Berichte, Band 80)
Schneider V (2014) Atypical aging defect: sensory discrimination, viticultural causes, and enological consequences. A review. Am J Enol Vitic 65(3):277–284. https://doi.org/10.5344/ajev.2014.14014.
Schultz HR (2016) Global climate change, sustainability, and some challenges for grape and wine production. J Wine Econ 11(1):181–200. https://doi.org/10.1017/jwe.2015.31
Schultz HR, Jones GV (2010) Climate induced historic and future changes in viticulture. J Wine Res 21(2–3):137–145. https://doi.org/10.1080/09571264.2010.530098
Schultz HR, Stoll M (2010) Some critical issues in environmental physiology of grapevines: future challenges and current limitations. Aust J Grape Wine Res 16:4–24. https://doi.org/10.1111/j.1755-0238.2009.00074.x
Schultz HR (2000) Climate change and viticulture: a European perspective on climatology, carbon dioxide and UV-B effects. Aust J Grape Wine Res 6(1):2–12. https://doi.org/10.1111/j.1755-0238.2000.tb00156.x
Schüttler A, Guthier C, Stoll M, Darriet P, Rauhut D (2016) Riesling: impact of grape cluster zone defoliation, grape must clarification and yeast strain on TDN potential in cool climate wines. Wine Vitic J 31(2):51–54
Schüttler A, Guthier C, Stoll M, Darriet P, Rauhut D (2015) Impact of grape cluster defoliation on TDN potential in cool climate Riesling wines. BIO Web Conf 5:1006. https://doi.org/10.1051/bioconf/20150501006
Ubeda C, Hornedo-Ortega R, Cerezo AB, Garcia-Parrilla MC, Troncoso AM (2020) Chemical hazards in grapes and wine, climate change and challenges to face. Food Chem 314:126222. https://doi.org/10.1016/j.foodchem.2020.126222
van Leeuwen C, Darriet P (2016) The impact of climate change on viticulture and wine quality. J Wine Econ 11(1):150–167. https://doi.org/10.1017/jwe.2015.21
Vasconcelos MC, Castagnoli S (2000) Leaf canopy structure and vine performance. Am J Enol Vitic 51(4):390
Vogt H (2020) Ein Winzling lehrt das Fürchten. Biol Unserer Zeit 50(4):254–262. https://doi.org/10.1002/biuz.202010710
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Der/die Autor(en), exklusiv lizenziert durch Springer-Verlag GmbH, DE, ein Teil von Springer Nature
About this chapter
Cite this chapter
Schmitt, M. (2021). Herausforderungen des Klimawandels für die Weinbranche. In: Trischler, A., Böhling, S. (eds) CSR in Hessen. Management-Reihe Corporate Social Responsibility. Springer Gabler, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-63004-4_8
Download citation
DOI: https://doi.org/10.1007/978-3-662-63004-4_8
Published:
Publisher Name: Springer Gabler, Berlin, Heidelberg
Print ISBN: 978-3-662-63003-7
Online ISBN: 978-3-662-63004-4
eBook Packages: Business and Economics (German Language)