Skip to main content

Less Chemicals and More Power: Pulsed Electric Field-Treatment for Reduction of Microorganisms

A biocide-free bath maintenance method in pre-treatment of dip coating plants for high-volume car body painting plants

  • Conference paper
  • First Online:
Advances in Automotive Production Technology – Theory and Application

Abstracts

Decisions on the implementation of innovative concepts and technologies into automotive pre-treatment lines are regularly marked by uncertainty regarding trade-offs between economic, ecological and technical aspects. Large amounts of water are consumed during the production in car body painting plants. It is hardly possible to avoid that certain microorganisms (MOs) proliferate in process water and pre-treatment bath tanks. If the bacterial load increases too much, the quality of the paint finish is likely to be impaired. Therefore, chemical biocides are regularly used in pre-treatment and dip coating plants. However, repeated use of the same biocides can lead to resistance of some MOs strains. In addition, stricter legislation is gradually withdrawing certain biocides from the market, making it more difficult to obtain approval for newly designed active substances. Hence, conventional decontamination methods might no longer work in the future. The Pulsed Electric Field (PEF)-Treatment is an innovative technology within the field of pre-treatment lines. By applying high voltage pulses (kV range, µs duration), a high field strength is generated in the process fluid, across the cell membrane of the MOs, which permeabilises the cell membrane. As a result, the MOs lose their cell interior (cytoplasm), and most likely die.

The results of the project show that PEF-treatment has a high market potential, several advantages but currently also higher cost compared to conventional biocide treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schumacher, J., Gebicke, W.: Neue Konzepte zum Wassermanagement im Lackierbetrieb von PKW-Karossen, in: Tagungsband Industrietage Wassertechnik, ISBN: 978–3–944328–29–4 (2013)

    Google Scholar 

  2. Fröhlich, G., Halbartschlager, J.: Ressourceneffiziente Nutzung von Wasser in Anlagen zur Serienlackierung von Automobilkarosserien. Chem. Ing. Tec. 91(10), 1417–1433 (2019)

    Article  Google Scholar 

  3. Gühring, I.K.: Mikrobieller Befall von Elektrotauchlack in der Automobilindustrie. Universität Stuttgart. https://doi.org/10.18419/opus-1501 (2000)

  4. Zwanger: Anwendungsgebiete für eine Anlage zur Dekontamination industrieller Abwässer mittels Elektroporation im Tauchlackierprozess. Studienarbeit (2019)

    Google Scholar 

  5. Rushton, L., Sass, A., Baldwin, A., Dowson, C.G., Donoghue, D., Mahenthiralingam, E.: Key role for efflux in the preservative susceptibility and adaptive resistance of Burkholderia cepacia complex bacteria. Antimicrob Agents Chemother 57(7), 2972–2980 (2013). https://doi.org/10.1128/AAC.00140-13

    Article  Google Scholar 

  6. EU: Regulation (Eu) No 528/2012 Of The European Parliament and of the Council of 22 May 2012 concerning the making available on the market and use of biocidal products (2012)

    Google Scholar 

  7. Streitberger, H.-J. (ed.): Automotive paints and coatings, 2. Aufl, WILEY-VCH (2008)

    Google Scholar 

  8. DiWaL: Development of resource-efficient water management and plant concepts for electrocoating lines: application of pulsed electric field technology for bacterial decontamination of industrial water and electro-deposition paints, BMBF R&D Project FKZ 02WAV1405C (2020)

    Google Scholar 

  9. Sack, M., Sigler, J., Frenzel, S., Eing, C., Arnold, J., Michelberger, T., Frey, W., Attmann, F., Stukenbrock, L., Müller, G.: Research on industrial-scale electroporation devices fostering the extraction of substances from biological tissue. Food Eng. Rev. 2(2), 147–156 (2010). https://doi.org/10.1007/s12393-010-9017-1

    Article  Google Scholar 

  10. Sack, M., Bluhm, H.: New measurement methods for an industrial-scale electroporation facility for sugar beets. IEEE Trans. on Ind. Applicat. 44(4), 1074–1083 (2008). https://doi.org/10.1109/TIA.2008.926222

    Article  Google Scholar 

  11. Eing, C., Goettel, M., Straessner, R., Gusbeth, C., Frey, W.: Pulsed electric field treatment of microalgae—benefits for microalgae bio-mass processing. IEEE Trans. Plasma Sci. 41(10), 2901–2907 (2013). https://doi.org/10.1109/TPS.2013.2274805

    Article  Google Scholar 

  12. Goettel, M., Eing, C., Gusbeth, C., Straessner, R., Frey, W.: Pulsed electric field assisted extraction of intracellular valuables from microal-gae. Algal Res. 2(4), 401–408 (2013). https://doi.org/10.1016/j.algal.2013.07.004

    Article  Google Scholar 

  13. Sack, M., Sigler, J., Eing, C., Stukenbrock, L., Stangle, R., Wolf, A., Muller, G.: Operation of an Electroporation Device for Grape Mash. IEEE Trans. Plasma Sci. 38(8), 1928–1934 (2010). https://doi.org/10.1109/TPS.2010.2050073

    Article  Google Scholar 

  14. Haberl, S., Miklavcic, D., Sersa, G., Frey, W., Rubinsky, B.: Cell membrane electroporation-Part 2: The applications. IEEE Electr. Insul. Mag. 29(1), 29–37 (2013). https://doi.org/10.1109/MEI.2013.6410537

    Article  Google Scholar 

  15. Kotnik, T., Frey, W., Sack, M., Haberl, S., Peterka, M., Miklavčič, D.: Electroporation-based applications in biotechnology. Trends Biotechnol 33(8), 480–488 (2015). https://doi.org/10.1016/j.tibtech.2015.06.002

  16. Silve, A., Papachristou, I., Wüstner, R., Sträßner, R., Schirmer, M., Leber, K., Guo, B., Interrante, L., Posten, C., Frey, W.: Extraction of lipids from wet microalga Auxenochlorella protothecoides using PEF-treatment and ethanol-hexane blends. Algal Res. 29, 212–222 (2018). https://doi.org/10.1016/j.algal.2017.11.016

    Article  Google Scholar 

  17. Akaberi, S., Gusbeth, C., Silve, A., Senthilnathan, D.S., Navarro-, E., Mo-, E., Müller, G., Frey, W.: Effect of pulsed electric field treatment on enzymatic hydrolysis of proteins of Scenedesmus almeriensis. Algal Res. 43, (2019). https://doi.org/10.1016/j.algal.2019.101656

  18. Akaberi, S., Krust, D., Müller, G., Frey, W., Gusbeth, C.: Impact of incubation conditions on protein and C-Phycocyanin recovery from Arthrospira platensis post-pulsed electric field treatment. Bioresour Technol 306, (2020). https://doi.org/10.1016/j.biortech.2020.123099

  19. Zielbauer, A.: Master Thesis: Technologierecherche, Szenario-Vergleich und Ökobilanz im Bereich der Automobilserienlackierung – Identifikation und Bewertung von Potenzialen der Badpflege-Technologien im Vorbehandlungs- und Tauchlackierprozess (2018)

    Google Scholar 

  20. Vogt, A. Master Thesis: Analyse und Quantifizierung von ökonomischen und ökologischen Vor- und Nachteilen der Elektroimpulsbehandlung in der Automobilserienlackierung (2018)

    Google Scholar 

  21. Gasde, J., Preiss, P., Lang-, C.: Integrated Innovation and Sustainability Analysis for New Technologies. TIM Review 10(2), 37–50 (2020). https://doi.org/10.22215/timreview/1328

  22. Frey, W., Gusbeth, C., Schwartz, T. Inactivation of Pseudomonas putida by PEF-Treatment: A Study on the Correlation of Treatment Parameters and Inactivation Efficiency in the Short-Pulse Range. J. Membrane Biol. 246, 769–781 (2013)

    Google Scholar 

  23. Gusbeth, C., Frey, W., Volkmann, H., Schwartz, T., Bluhm, H.: PEF-treatment for bacteria reduction and its impact on hospital wastewater. Chemosphere 75(2), 228–233 (2009). https://doi.org/10.1016/j.chemosphere.2008.11.066

    Article  Google Scholar 

  24. Sack, M., Hochberg, M., Mueller, G. Design of a Semiconductor-based Bipolar Marx Generator. IPMHVC Conference. 978–1–4673–7323–4 (2014)

    Google Scholar 

  25. Sack, M., Herzog, D., Hochberg, M., Frey, W., Mueller, G. 8-Stage Pulse Generator for Bipolar Ground-Symmetric Operation. PCIM conference. 978–3–8007–4938–6 (2019)

    Google Scholar 

  26. Krämer, S.: Total Cost of Ownership (TCO). VDM-Verl, Saarbrücken (2007)

    Google Scholar 

  27. ISO 14044: Env. Management - life cycle assessment - requirements & guidelines (2018)

    Google Scholar 

  28. Goedkoop, M., Heijungs, R., Huijbregts, M., de Schryver, A., Struijs, J., van Zelm, R. ReCiPe 2008 - A life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level First edition (version 1.08) Report I: Characterisation (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Preiß .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer-Verlag GmbH, DE, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Preiß, P. et al. (2021). Less Chemicals and More Power: Pulsed Electric Field-Treatment for Reduction of Microorganisms. In: Weißgraeber, P., Heieck, F., Ackermann, C. (eds) Advances in Automotive Production Technology – Theory and Application. ARENA2036. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-62962-8_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-62962-8_36

  • Published:

  • Publisher Name: Springer Vieweg, Berlin, Heidelberg

  • Print ISBN: 978-3-662-62961-1

  • Online ISBN: 978-3-662-62962-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics