Skip to main content

Analysenmethoden zur Charakterisierung von Gashydraten

  • 217 Accesses

Zusammenfassung

In Kap. 9 werden verschiedene Methoden zur Analyse und Charakterisierung von Gashydraten vorgestellt. Dazu gehört neben der Raman-Spektroskopie, der Röntgendiffraktometrie und Neutronendiffraktometrie auch die magnetische Kernresonanzspektroskopie, Elektronenmikroskopie und Differenzkalorimetrie. Es werden jeweils die allgemeinen Grundlagen erklärt und Beispiele für die Anwendungen in der Gashydratforschung gegeben.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-662-62778-5_9
  • Chapter length: 19 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   34.99
Price excludes VAT (USA)
  • ISBN: 978-3-662-62778-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   44.99
Price excludes VAT (USA)
Abb. 9.1
Abb. 9.2
Abb. 9.3
Abb. 9.4
Abb. 9.5
Abb. 9.6
Abb. 9.7
Abb. 9.8
Abb. 9.9

Literatur

  • Alavi S, Susilo R, Ripmeester JA (2009) Linking microscopic guest properties to macroscopic observable in clathrate hydrates: guest-host hydrogen bonding. The Journal of Chemical Physics 130:174501

    CrossRef  Google Scholar 

  • Banwell CN, McCash EM (1999) Molekülspektroskopie – Ein Grundkurs. Oldenbourg, München

    Google Scholar 

  • Brewer PG, Malby G, Pateris JD, White SN, Peltzer ET, Wopenka B, Freeman J, Brown MO (2004) Development of a laser Raman spectrometer for deep-ocean science. Deep-Sea Rese 51:739–753

    CrossRef  Google Scholar 

  • Celli M, Zoppi M, Zaghloul MAS, Ulivi L (2012) High pressure optical cell for synthesis and in situ Raman spectroscopy of hydrogen clathrate hydrates. Review of Scientific Instruments 83:113101

    CrossRef  Google Scholar 

  • Chou I-M, Sharma A, Burruss RC, Shu J, Mao H-K, Hemley RJ, Goncharov AF, Stern LA, Kirby SH (2000) Transformations in methane hydrates. Proceedings of the National Academy of Sciences 97(25):13484–13487

    CrossRef  Google Scholar 

  • Dalmazzone D, Clausse D, Dalmazzone C, Herzhaft B (2004) The stability of methane hydrates in highly concentrated electrolyte solutions by differential scanning calorimetry and theoretical computation. American Mineralogist 89:1183–1191

    CrossRef  Google Scholar 

  • Dec SF (2009) Clathrate hydrate formation: dependence on aqueous hydration number. Journal Phys Chemistry C 113:12355–11236

    CrossRef  Google Scholar 

  • Flegler SL, Heckman JW, Klomparens KL (1995) Elektronenmikroskopie. Spektrum Akademischer, Heidelberg

    Google Scholar 

  • Handa YP (1986) Compositions, enthalpies of dissociation, and heat capacities in the range 85 to 270 K for clathrate hydrates of methane, ethane, and propane, and enthalpy of dissociation of isobutane hydrate, as determined by a heat-flow calorimeter. Journal Chem Thermody 18:915–921

    CrossRef  Google Scholar 

  • Hester KC, Dunk RM, White SN, Brewer PG, Peltzer ET, Sloan ED (2007) Gas hydrate measurements at hydrate ridge using raman spectroscopy. Geochimica et Cosmochimica Acta 71:2947–2959

    CrossRef  Google Scholar 

  • Kleber W, Bautsch H-J, Bohm J, Klimm D (2010) Einführung in die Kristallographie, 19. Aufl. Oldenbourg, München

    CrossRef  Google Scholar 

  • Kuhs WF, Genov G, Goreshnik E, Zeller A, Techmer KS, Bohrmann G (2004) The impact of porous microstructures of gas hydrates on their macroscopic properties. International Journal of Offshore and Polar Engineering 14(4):305–309

    Google Scholar 

  • Kuhs WF, Hansen TC (2006) Time-resolved neutron diffraction studies with emphasis on water ices and gas hydrates. Reviews in Mineralogy & Geochemistry 63:171–204

    CrossRef  Google Scholar 

  • Lee L, Seo Y, Seo Y-T, Moudrakovski IL, Ripmeester JA (2003) Recovering methane from solid methane hydrate with carbon dioxide. Angewandte Chemie International Edition 42:5048–5051

    CrossRef  Google Scholar 

  • Luzi M (2006) Die Rolle molekülspezifischer Eigenschaften von Gasen bei deren Einbau in den Hydratkäfig. Diplomarbeit, Universität Potsdam

    Google Scholar 

  • Luzi M, Girod M, Naumann R, Schicks JM, Erzinger J (2010) A high-pressure cell for kinetic studies on gas hydrates by powder x-ray diffraction. Review of Scientific Instruments 81:125105

    CrossRef  Google Scholar 

  • Luzi M, Schicks JM, Naumann R, Erzinger J (2012) Systematic kinetic studies on mixed gas hydrates by Raman spectroscopy and powder X-ray diffraction. Journal Chem Thermody 48:28–35

    CrossRef  Google Scholar 

  • Moudrakovski IL, Sanchez AA, Ratcliffe CI, Ripmeester JA (2001) Nucleation and growth of hydrates on ice surfaces: new insights from 129Xe NMR experiments with hyperpolarized xenon. Journal Phys Chemistry B 105:12338–12347

    CrossRef  Google Scholar 

  • Ohno H, Strobel TA, Dec SF, Sloan ED, Koh CA (2009) Raman studies of methane-ethane hydrate metastability. Journal Phys Chemistry A 113:1711–1716

    CrossRef  Google Scholar 

  • Pimentel GC, Charles SW (1963) Infrared spectral pertubations in matrix experiments. Pure and Applied Chemistry 7:111–123

    CrossRef  Google Scholar 

  • Qin J, Kuhs WF (2013) Quantitative analysis of gas hydrates using raman spectroscopy. AIChE Journal 59(6):2155–2167

    CrossRef  Google Scholar 

  • Ripmeester JA, Ratcliffe CI (1988) Low-temperature cross-polarization/magic-angle spinning 13C NMR of solid state methane hydrates: structure, cage occupancy, and hydration number. Journal Phys Chemistry 92(2):337–339

    CrossRef  Google Scholar 

  • Ripmeester JA, Ratcliffe CI (1990) Xenon-129 NMR studies of clathrate hydrates: new guests for structure II and structure H. Journal Phys Chemistry 94(25):8773–8776

    CrossRef  Google Scholar 

  • Rydzy MB, Schicks JM, Naumann R, Erzinger J (2007) Dissociation enthalpies of synthesized multicomponent gas hydrates with respect to the guest composition and cage occupancy. Journal Phys Chemistry B 111:9539–9545

    CrossRef  Google Scholar 

  • Schicks J, Luzi M, Beeskow-Strauch B (2011) The conversion process of hydrocarbon hydrates into CO2 hydrates and vice versa: thermodynamic considerations. Journal Phys Chemistry A 115(46):13324–13331

    CrossRef  Google Scholar 

  • Schicks J, Pan M, Giese R, Poser M, Ismail NA, Luzi-Helbing M, Bleisteiner B, Lenz C (2020) A new high-pressure cell for systematic in situ investigations of micro-scale processes in gas hydrates using confocal micro-Raman spectroscopy. Review of Scientific Instruments 91(11):115103

    CrossRef  Google Scholar 

  • Schwedt G (2008) Analytische Chemie – Grundlagen, Methoden und Praxis, 2. Aufl. Wiley-VCH Verlag GmbH &Co, KGaA, Weinheim

    Google Scholar 

  • Spieß L, Teichert G, Schwarzer R, Behnken H, Genzel C (2009) Moderne Röntgenbeugung. Röntgendiffraktometrie für Materialwissenschaftler, Physiker und Chemiker, 2. Aufl. Vieweg und Teubner, Wiesbaden

    Google Scholar 

  • Staykova DK, Kuhs WF, Salamatin AN, Hansen T (2003) Formation of porous gas hydrates from ice powders: diffraction experiments and multistage model. Journal Phys Chemistry B 107:10299–10311

    CrossRef  Google Scholar 

  • Stern LA, Kirby SH, Durham WB (1996) Peculiarities of methane clathrate hydrate formation and solid state deformation, including possible superheating of water ice. Science 273:1843–1848

    CrossRef  Google Scholar 

  • Stern LA, Kirby SH, Circone S, Durham WB (2004) Scanning Electron Microscopy investigations of laboratory-grown gas clathrate hydrates formed from melting ice, and comparison to natural hydrates. American Mineralogist 89:1162–1175

    CrossRef  Google Scholar 

  • Subramanian S, Sloan ED (1999) Molecular measurements of methane hydrate formation. Fluid Phase Equilibria 158–160:813–820

    CrossRef  Google Scholar 

  • Subramanian S, Kini RA, Dec SF, Sloan ED (2000) Chemical Engineering Science 55:1981–1999

    CrossRef  Google Scholar 

  • Subramanian S, Sloan ED (2002) Trends in vibrational frequencies of guests trapped in clathrate hydrate cages. Journal Phys Chemistry B 106:4348–4355

    CrossRef  Google Scholar 

  • Yousuf M, Qadri SB, Knies DL, Grabowski KS, Coffin RB, Pohlman JW (2004) Novel results on structural investigations of natural minerals of clathrate hydrates. Applied Phys A 78:925–939

    CrossRef  Google Scholar 

  • Wang Z, He D, Zhang W, Li W, Li W, Qin J, Lei L, Zou Y, Yang X (2010) Portable high pressure sapphire anvil cell for gas hydrates research. Review of Scientific Instruments 81:085102

    CrossRef  Google Scholar 

  • Wedler G, Freund H-J (2012) Lehrbuch der Physikalischen Chemie, Sechste, vollständig überarbeitete und aktualisierte Auflage, Wiley-VCH, Weinheim

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judith M. Schicks .

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Schicks, J.M. (2021). Analysenmethoden zur Charakterisierung von Gashydraten. In: Gashydrate – Eine Einführung in Grundlagenforschung und Anwendung. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-62778-5_9

Download citation