Skip to main content

Zersetzung natürlicher Gashydratvorkommen: potentielle Folgen für Hangstabilitäten und Klima

  • Chapter
  • First Online:
Gashydrate – Eine Einführung in Grundlagenforschung und Anwendung
  • 539 Accesses

Zusammenfassung

In Kap. 8 wird die Zersetzung von Gashydraten beschrieben und auf Phänomene wie den Memory-Effekt und den Selbsterhaltungseffekt (self-preservation effect oder anomalous preservation) eingegangen. Es wird beschrieben, unter welchen Umständen sich porenfüllendes, gerüstbildendes oder zementierendes Hydrat im Sediment bildet, wann dieses Hydrat die mechanischen Eigenschaften des Wirtssediments beeinflusst und wann der Abbau von Gashydraten in hydratführenden Sedimenten zu Hangrutschungen führen kann. Ferner wird auf die möglichen Wechselwirkungen zwischen Gashydraten im und unterhalb des Permafrostes sowie in marinen Sedimenten und dem Klima eingegangen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 39.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • Chen X, Espinoza DN (2018) Ostwald ripening changes the pore habit and spatial variability of clathrate hydrate. Fuel 214:614–622

    Article  Google Scholar 

  • Cheng C-X, Tian Y-J, Wang F, Wu X-H, Zheng J-L, Zhang J, Li L-W, Yang P-L (2019) Experimental study on the morphology and memory effect of methane hydrate reformation. Energy Fuel 33:3439–3447

    Article  Google Scholar 

  • Chuvilin E, Bukhanov B, Davletshina D, Grebenkin S, Istomin V (2018) Dissociation and Self-Preservation of Gas Hydrates in Permafrost. Geosciences 8, 431

    Google Scholar 

  • Dean JF, Middelburg JJ, Röckmann T, Aerts R, Blauw LG, Egger M, Jetten MSM, de Jong AEE, Meisel OH, Rasigraf O, Slomp CP, in’t Zandt MH, Dolman AJ (2018) Methane feedbacks to the global climate system in a warmer world. Rev Geophys 56:207–250

    Article  Google Scholar 

  • Elger J, Berndt C, Rüpke L, Krastel S, Gross F, Geissler WH (2018) Submarine slope failures due to pipe structure formation. Nat Commun 9:715

    Article  Google Scholar 

  • Ershov ED, Yakushev VS (1992) Experimental research on gas hydrate decomposition in frozen rocks. Cold Reg Sci Technol 20:147–156

    Article  Google Scholar 

  • Falenty A, Kuhs WF (2009) „Self-Preservation“ of CO2 gas hydrates – surface microstructure and ice perfection. J Phys Chem B 113:15975–15988

    Article  Google Scholar 

  • Hachikubo A, Takeya S, Chuvilin E, Istomin V (2011) Preservation phenomena of methane hydrate in pore spaces. Phys Chem Chem Phys 13:17449–17452

    Article  Google Scholar 

  • Handa YP (1986) Calorimetric determinations of the compositions, enthalpies of dissociation, and heat capacities in the range 85 to 270 K for clathrate hydrates of xenon and krypton. J Chem Thermodnamics 18:891–902

    Google Scholar 

  • Heeschen KU, Janoscha J, Spangenberg E, Schicks JM, Giese R (2020) The impact of ice on the tensile strength of unconsolidated sand-A model for gas hydrate-bearing sands? Marine and Petroleum Geology, 122, 104607

    Google Scholar 

  • Horozal S, Bahk J-J, Urgeles R, Kim GY, Cukur D, Kim S-P, Lee GH, Lee SH, Ryu B-J, Kim J-H (2017) Mapping gas hydrate and fluid flow indicators and modeling gas hydrate stability zone (GHSZ) in the Ulleung Basin, East (Japan) Sea: Potential linkage between the occurrence of mass failures and gas hydrate dissociation. Mar Pet Geol 80:171–191

    Article  Google Scholar 

  • Kennett J, Cannariato KG, Hendy IL, Behl RJ (2003) Methane hydrates in quaternary climate change: the clathrate gun hypothesis. American Geophysical Union, Washington, DC

    Book  Google Scholar 

  • Kessler JD, Valentine DL, Redmond MC, Du M, Chan EW, Mendes SD, Quiroz EW, Villanueva CJ, Shusta SS, Werra L, Yvon-Lewis M, Weber SA, T. C. (2011) A persistent oxygen anomaly reveals the fate of spilled methane in the deep Gulf of Mexico. Science 331:312–315

    Article  Google Scholar 

  • Kleber W, Bautsch H-J, Bohm KJ, Klimm D (2010) Einführung in die Kristallographie, 19. Aufl. Oldenbourg, München

    Book  Google Scholar 

  • Kulenkampff J Spangenberg E (2005) Scientific Results from the Mallik 2002 gas hydrate production research well program, Mackenzie Delta, Northwest Territories, Canada. In: Dallimore SR, Collett TS (Hrsg) Geological Survey of Canada, CD-ROM

    Google Scholar 

  • Kutzbach L, Overduin P, Pfeiffer E-M, Wetterich S, Zubrzycki S (2015) Terrestrischer und submariner Permafrost in der Arktis. In: Lozán JL, Grassl H, Kasang D, Notz D, Escher-Vetter H (Hrsg) Warnsignal Klima: Das Eis der Erde. 78–86

    Google Scholar 

  • Liu Z, Wei H, Peng L, Wei C, Ning F (2017) An easy and efficient way to evaluate mechanical properties of gas hydrate-bearing sediments: the direct shear test. J Pet Sci Eng 149:56–64

    Article  Google Scholar 

  • Maeda N (2018) Interfacial nanobubbles and the memory effect of natural gas hydrates. J Phys Chem C 122:11399–11406

    Article  Google Scholar 

  • Maslin M, Owen M, Day S, Long D (2004) Linking continental-slope failures and climate change: testing the clathrate gun hypothesis. Geol Soc Am 32:53–56

    Google Scholar 

  • Mienert J, Vanneste M, Bünz S, Andreassen K, Haflidason H, Sejrup HP (2005) Ocean warming and gas hydrate stability on the mid-Norwegian margin at the Storegga Slide. Mar Pet Geol 22:233–244

    Article  Google Scholar 

  • Reagan MT, Moridis GJ (2008) Dynamic response of oceanic hydrate deposits to ocean temperature change. J Geophys Res 113:C12023

    Google Scholar 

  • Roger PM (2000) Methane hydrate – melting and memory. Ann New York Acad Sci 912:474–482

    Article  Google Scholar 

  • Ruppel CD, Kessler JD (2017) The interaction of climate change and methane hydrates. Rev Geophys 55(1):126–168

    Article  Google Scholar 

  • Schicks JM, Ripmeester JA (2004) The coexistence of two different methane hydrate phases under moderate pressure and temperature conditions: kinetic versus thermodynamic products. Angew Chem Int Ed 43:3310–3313

    Article  Google Scholar 

  • Shakhova N, Semiletov I, Chuvilin E (2019) Associated methane releases in the East Siberian Arctic Shelf. Geosciences 9:251

    Article  Google Scholar 

  • Sowers T (2006) Late quaternary atmospheric CH4 isotope record suggests marine clathrates are stable. Science 311:838–840

    Article  Google Scholar 

  • Spangenberg E (2001) Modeling of the influence of gas hydrate content on the electrical properties of porous sediments. J Geophys Res 106(B4):6535–6548

    Article  Google Scholar 

  • Spangenberg E, Kulenkampff J (2006) Influence of methane hydrate content on electrical sediment properties. Geophys Res Lett 33:L24315

    Article  Google Scholar 

  • Spangenberg E, Priegnitz M, Heeschen K, Schicks JM (2015) Are laboratory-formed hydrate-bearing systems analogous to those in nature? J Chem Eng Data 60:258–268

    Article  Google Scholar 

  • Staykova DK, Kuhs WF, Salamatin AN, Hansen T (2003) Formation of porous gas hydrates from ice powders: diffraction experiments and multistage model. J Phys Chem B 107:10299–10311

    Article  Google Scholar 

  • Stern LA, Circone S, Kirby SH, Durham WB (2001) Anomalous preservation of pure methane hydrate at 1 atm. J Phys Chem B 105:1756–1762

    Article  Google Scholar 

  • Stern LA, Circone S, Kirby SH, Durham WB (2003) Temperature, pressure, and compositional effects on anomalous or „self“ preservation of gas hydrates. Can J Phys 81:271–283

    Article  Google Scholar 

  • Suess E, Torres ME, Bohrmann G, Collier RW, Greinert J, Linke P, Rehder G, Trehu A, Wallmann K, Winckler G, Zuleger E (1999) Gas hydrate destabilization: enhanced dewatering, benthic material turnover and large methane plumes at the Cascadia convergent margin. Earth Planet Sci Lett 170:1–15

    Article  Google Scholar 

  • Sultan N, Cochonat P, Foucher JP, Mienert J (2004) Effect of gas hydrates melting on seafloor slope instability. Marine Geology 213(1–4):379–401

    Google Scholar 

  • Thompson H, Soper AK, Buchanan P, Aldivan N, Creek JL, Koh CA (2006) Methane hydrate formation and decomposition: structural studies via neutron diffraction and empirical potential structure refinement. J Chem Phys 124:164508

    Article  Google Scholar 

  • Yakushev VS, Chuvilin EM (2000) Cold regions. Sci Technol 31:189–197

    Google Scholar 

  • You K, Flemings P (2014) Dynamics of permafrost associated methane hydrate during climate change. AGU Fall Meeting, 2014, Paper-Nr. OS21A-1114

    Google Scholar 

  • Yvon-Lewis SA, Hu L, Kessler J (2011) Methane flux to the atmosphere from the deepwater horizon oil disaster. Geophys Res Lett 38:L01602

    Article  Google Scholar 

  • Zhang P, Wu Q, Mu C, Chen X (2018) Nucleation mechanisms of CO2 hydrate reflected by gas solubility. Sci Rep 8:10441

    Article  Google Scholar 

  • Zhu Y, Zhang Y, Wen H, Lu Z, Jia Z, Li Y, Li Q, Liu C, Wang P, Guo X (2010) Gas hydrates in the Qilian Mountain Permafrost, Qinghai, Northwest China. Acta Geol Sin 84(1):1–10

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judith M. Schicks .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schicks, J.M. (2021). Zersetzung natürlicher Gashydratvorkommen: potentielle Folgen für Hangstabilitäten und Klima. In: Gashydrate – Eine Einführung in Grundlagenforschung und Anwendung. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-62778-5_8

Download citation

Publish with us

Policies and ethics