Skip to main content

Gewinnung von Erdgas durch den Abbau natürlicher Gashydratvorkommen

  • 262 Accesses

Zusammenfassung

In Kap. 6 werden zunächst Kriterien zur Klassifikation natürlicher Gashydratvorkommen in Hinsicht auf eine wirtschaftlich sinnvolle Förderung des darin gespeicherten Gases vorgestellt. Anschließend werden die bisher entwickelten und im Labor wie im Feld getesteten Methoden zur Förderung von Gas aus natürlichen Hydratvorkommen beschrieben. Dazu gehören die thermische Stimulation mithilfe eines heißen Fluids oder der In-situ-Verbrennung, die Druckreduktion und die chemische Stimulation u.a. mittels der Injektion von Kohlenstoffdioxid oder Kohlenstoffdioxid-Stickstoff-Gemischen. Abschließend wird auf die Risiken und Herausforderungen einer Exploitation natürlicher Gashydratvorkommen eingegangen.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-662-62778-5_6
  • Chapter length: 20 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   34.99
Price excludes VAT (USA)
  • ISBN: 978-3-662-62778-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   44.99
Price excludes VAT (USA)
Abb. 6.1
Abb. 6.2
Abb. 6.3
Abb. 6.4

Literatur

  • Avrami M (1939) Kinetics of phase change I: General theory. J Chem Phys 7:1103–1112

    CrossRef  Google Scholar 

  • Boswell R, Collett TS (2011) Current perspectives on gas hydrate resources. Energy Environ Sci 4:1206–1215

    CrossRef  Google Scholar 

  • Boswell R, Schoderbek D, Collett TS, Ohtsuki S, White M, Anderson BJ (2017) The iġnik sikumi field experiment, Alaska North Slope: design, operations, and implications for CO2-CH4 exchange in gas hydrate reservoirs. Energy Fuel 31(1):140–153

    CrossRef  Google Scholar 

  • Boswell R, Hancock S, Yamamoto K, Collett T, Pratap M, Lee S-R (2020) Natural gas hydrates: status of potential as an energy resource. In: Future energy. Elsevier, Amsterdam

    Google Scholar 

  • Castaldi MJ, Zhou Y, Yegulalp TM (2007) Down-hole combustion method for gas production from methane hydrates. J Pet Sci Eng 56:176–185

    CrossRef  Google Scholar 

  • Cranganu C (2009) In-situ thermal stimulation of gas hydrates. J Pet Sci Eng 65:76–80

    CrossRef  Google Scholar 

  • Dallimore SR, Yamamoto K, Wright F, Bellefleur G (Hrsg) (2012) Scientific results from the JOGMEC/NRCan/Aurora Mallik 2007−2008 gas hydrate production research well program, Mackenzie Delta, Northwest Territories, Canada; Geological Survey of Canada, Natural Resources Canada: Ottawa, Ontario, Canada, Bulletin 601

    Google Scholar 

  • Deusner C, Bigalke N, Kossel E, Haeckel M (2012) Methane production from gas hydrate deposits through injection of supercritical CO2. Energies 5:2112–2140

    CrossRef  Google Scholar 

  • Falenty A, Qin J, Salamatin AN, Yang L, Kuhs WF (2016) Fluid composition and kinetics of the in situ replacement in CH4-CO2 hydrate system. J Phys Chem C 120:27159–27172

    CrossRef  Google Scholar 

  • Fujii K, Kondo W (1974) Kinetics of the hydration of tricalcium silicate. J Am Ceram Soc 1974(57):492–497

    CrossRef  Google Scholar 

  • Hancock SH, Collett TS, Dallimore SR, Satoh T, Inoue T, Huenges E, Henninges J, Weatherill B (2005a) Overview of thermal-stimulation production-test results for the JAPEX/JNOC/GSC et al. Mallik 5L-38 gas hydrate production research well. In: Dallimore SR, Collett TS (Hrsg) Scientific results from the Mallik 2002 gas hydrate production research well program, Mackenzie Delta, Northwest Territories, Canada. GSC Bulletin, 585. Geological Survey of Canada

    Google Scholar 

  • Hancock SH, Dallimore SR, Collett TS, Carle D, Weatherill B, Satoh T, Inoue T (2005b) Overview of pressure-drawdown production-test results for the JAPEX/JNOC/GSC et al. Mallik 5L-38 gas hydrate production research well. In: Dallimore SR, Collett TS (Hrsg) Scientific results from the Mallik 2002 gas hydrate production research well program, Mackenzie Delta, Northwest Territories, Canada. GSC Bulletin, 585. Geological Survey of Canada

    Google Scholar 

  • Heeschen KU, Abendroth S, Priegnitz M, Spangenberg E, Thaler J, Schicks JM (2016) Gas production from methane hydrate: a laboratory simulation of the multistage depressurization test in mallik, northwest territories, Canada. Energy Fuel 30:6210–6219

    CrossRef  Google Scholar 

  • Hirohama S, Shimoyama Y, Wakabayashi A, Tatsuta S, Nishida N (1996) Conversion of CH4-hydrate to CO2- hydrate in liquid CO2. J Chem Eng Jpn 29:1014–1020

    Google Scholar 

  • Kamath VA, Mutalik PN, Sira JH, Patil SL (1991) Experimental study of brine injection and depressurization methods for dissociation of gas hydrates. SPE Form Eval 6:477–484

    CrossRef  Google Scholar 

  • Kang S-P, Lee H, Lee C-S, Sung W-M (2001) Hydrate phase equilibria of the guest mixtures containing CO2, N2 and tetrahydrofuran. Fluid Phase Equilib 185(1–2):101–109

    Google Scholar 

  • Koh D-Y, Kang H, Kim D-O, Park J, Cha M, Lee H (2012) Recovery of methane from gas hydrates intercalated within natural sediments using CO2 and a CO2/N2 gas mixture. ChemSusChem 5(8):1443–1448

    CrossRef  Google Scholar 

  • Konno Y, Jin Y, Yoneda J, Uchiumi T, Shinjou K, Nagao J (2016) Hydraulic fracturing in methane-hydrate-bearing sand. RSC Adv 6:73148–73155

    CrossRef  Google Scholar 

  • Jander W (1927) Reaktionen im festen Zustande bei höheren Temperaturen. Reaktionsgeschwindigkeiten endotherm verlaufender Umsetzungen. Z Anorg Allg Chem 163:1–30

    CrossRef  Google Scholar 

  • Konno Y, Fujii T, Sato A, Akamine K, Naiki M, Masuda Y, Yamamoto K, Nagao J (2017) Key findings of the world’s first offshore methane hydrate production test off the coast of Japan: toward future commercial production. Energy Fuel 31:2607–2616

    CrossRef  Google Scholar 

  • Kurihara M, Funatsu K, Ouchi H, Sato A, Yasuda M, Yamamoto K, Fujii T, Numasawa M, Narita H, Masuda Y, Dallimore SR, Wright F (2011) Analysis of 2007/2008 JOGMEC/NRCAN/AURORA Mallik gas hydrate production test through numerical simulation. Proceedings of the 7th International Conference on Gas Hydrates (ICGH 2011), Edinburgh, Scotland, United Kingdom, July 17–21, 2011

    Google Scholar 

  • Kvamme B, Graue A, Buanes T, Kuznetsova T, Ersland. (2007) Storage of CO2 in natural gas hydrate reservoirs and the effect of hydrate as an extra sealing in cold aquifers. Int. J. Greenhouse Gas Control 1:236–246

    Google Scholar 

  • Lee BR, Koh CA, Sum AK (2014) Quantitative measurement and mechanisms for CH4 production from hydrates with the injection of liquid CO2. Phys Chem Chem Phys 16:14922–14927

    Google Scholar 

  • Lee H, Seo Y, Seo YT, Moudrakovski IL, Ripmeester JA (2003) Recovering Methane from Solid Methane Hydrate with Carbon Dioxide. Angew. Chemie Int. Ed., 42:5048–5051

    Google Scholar 

  • Levenspiel O (1999) Chemical reaction engineering. 3rd edition. John Wiley & Sons, New York

    Google Scholar 

  • Li XS, Wan LH, Li G, Li QP, Chen ZY, Yan KF (2008) Experimental investigation into the production behavior of methane hydrate in porous sediment with hot brine stimulation. Ind Eng Chem Res 47:9696–9702

    CrossRef  Google Scholar 

  • Li J, Ye J, Qin X, Qiu H, Wu N, Lu H, Xie W, Lu J, Peng F, Xu Z, Lu C, Kuang Z, Wei J, Liang Q, Lu H, Kou B (2018) The first offshore natural gas hydrate production test in South China Sea. China Geology 1:5–16

    CrossRef  Google Scholar 

  • Luzi M, Schicks JM, Naumann R, Erzinger J (2012) Systematic kinetic studies on mixed gas hydrates by Raman spectroscopy and powder X-ray diffraction. J Chem Thermodyn 48:28–35

    CrossRef  Google Scholar 

  • Moridis GJ, Reagan MT (2007) Strategies for gas production from oceanic Class 3 hydrate accumulations., Offshore Technology Conference, Houston, Texas, USA, 30 April–3 May 2007, OTC 18865

    Google Scholar 

  • Moridis GJ, Collett TS, Boswell R, Kiruhara M, Reagan MT, Koh C, Sloan ED (2009) Towards production from gas hydrates, current status, assessment of resources, and simulation based evaluation of technology and potential. SPE Reserv Eval Eng 12:745–771

    CrossRef  Google Scholar 

  • Moridis GJ, Reagan MT (2011) Estimating the upper limit of gas production from Class 2 hydrate accumulations in the permafrost: 1. Concepts, system description, and the production base case. J Pet Sci Eng 76:194–204

    CrossRef  Google Scholar 

  • Pan M, Ismail N, Luzi-Helbing M, Koh CA, Schicks JM (2020) New insights on a μm scale into the transformation process of CH4 hydrates to CO2-rich mixed hydrates. Energies 13(22):5908

    CrossRef  Google Scholar 

  • Park Y, Kim D-Y, Lee J-W, Huh D-G, Park K-P, Lee J, Lee H (2006) Sequestering carbon dioxide into complex structures of naturally occurring gas hydrates. Proc Natl Acad Sci U S A 103(34):12,690–12,694

    CrossRef  Google Scholar 

  • Rydzy MB, Schicks JM, Naumannn R, Erzinger J (2007) Dissociation enthalpies of synthesized multicomponent gas hydrates with respect to the guest composition and cage occupancy. J Phys Chem B 111:9539–9545

    CrossRef  Google Scholar 

  • Schicks J, Luzi M, Beeskow-Strauch B (2011) The conversion process of hydrocarbon hydrates into co2 hydrates and vice versa: thermodynamic considerations. J Phys Chem A 115(46):13324–13331

    CrossRef  Google Scholar 

  • Schicks J, Spangenberg E, Giese R, Luzi-Helbing M, Priegnitz M, Beeskow-Strauch B (2013) A counter-current heat-exchange reactor for the thermal stimulation of hydrate-bearing sediments. Energies 6(6):3002–3016

    CrossRef  Google Scholar 

  • Schicks J, Beeskow-Strauch B, Heeschen K, Spangenberg E, Luzi-Helbing M (2018) From Microscale (400 μl) to Macroscale (425 L): experimental Investigations of the CO2/N2-CH4 exchange in gas hydrates simulating the iġnik sikumi field trial. J Geophys Res 123(5):3608–3620

    CrossRef  Google Scholar 

  • Schicks JM, Spangenberg E, Giese R, Luzi-Helbing M, Priegnitz M, Heeschen KU, Strauch B, Schrötter J, Kück J, Töpfer M, Klump J, Thaler J, Abendroth S (2019) A counter-current heat-exchange reactor for the thermal stimulation of gas hydrate and petroleum reservoirs. In: Proceedings of the annual offshore technology conferencevolume 2019-May, Offshore Technology Conference 2019, Houston, United States; Code 148087

    Google Scholar 

  • Schicks J, Haeckel M, Janicki G, Spangenberg E, Thaler J, Giese R, Beeskow-Strauch B, Heeschen K, Priegnitz M, Luzi-Helbing M, Deusner C, Kossel E, Bigalke N, Schlüter S, Hennig T, Derrberg G, Wallmann K (2020) Development, test, and evaluation of exploitation technologies for the application of gas production from natural gas hydrate reservoirs and their potential application in the Danube Delta, Black Sea. Mar Pet Geol 120:104488

    CrossRef  Google Scholar 

  • Schmalzried H (1995) Chemical kinetics of solids. Erste Ausgabe, Verlag Chemie, Weinheim, ISBN 9783527615537

    Google Scholar 

  • Sfaxi IBA, Belandria V, Mohammadib AH, Lugo R, Richon D (2012) Phase equilibria of CO2 + N2 and CO2 + CH4 clathrate hydrates: experimental measurements and thermodynamic modelling. Chem Eng Sci 84:602–611

    CrossRef  Google Scholar 

  • Uddin M, Wright JF, Dallimore SR, Coombe D (2012) Gas hydrate production from the Mallik reservoir: Numerical history matching and long-term production forecasting. In: Dallimore SR, Yamamoto K, Wright JF, Bellefleur G (Hrsg) Scientific results from the JOGMEC/NRCan/Aurora Mallik 2007−2008 gas hydrate production research well program, Mackenzie Delta, Northwest Territories, Canada, Bd Bulletin 601. Geological Survey of Canada, Natural Resources Canada, Ottawa, Ontario, Canada, S 261–289

    Google Scholar 

  • Yamamoto K, Wang X-X, Tamaki M, Suzuki K (2019) The second offshore production of methane hydrate in the Nankai Trough and gas production behavior from a heterogeneous methane hydrate reservoir. RSC Adv 9:25987–26013

    CrossRef  Google Scholar 

  • Yang X, Gates ID (2009) Design of hybrid steam-in situ combustion bitumen recovery processes. Nat Resour Res 18:213–233

    CrossRef  Google Scholar 

  • Yasuda M, Dallimore S (2007) Summary of the methane hydrate second Mallik production test. J Japan Assoc Petrol Technol 72:603–607

    CrossRef  Google Scholar 

  • Zhao J, Xu K, Song Y, Liu W, Lam Y, Liu K, et al. (2012). A review on research on replacement of CH4 in natural gas hydrates by use of CO2. Energies 5(2):399–419

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judith M. Schicks .

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Schicks, J.M. (2021). Gewinnung von Erdgas durch den Abbau natürlicher Gashydratvorkommen. In: Gashydrate – Eine Einführung in Grundlagenforschung und Anwendung. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-62778-5_6

Download citation