Skip to main content

Gashydratvorkommen in der Natur

  • 236 Accesses

Zusammenfassung

Kap. 5 gibt zunächst eine Übersicht, wo in der Natur die notwendigen Voraussetzungen für eine Gashydratbildung erfüllt sind und aus welchen Quellen die hydratbildenden Gase stammen können. In diesem Zusammenhang wird auch die Isotopenfraktionierung des Kohlenstoffs besprochen. Darauf basierend werden die verschiedenen Ansätze zur Abschätzung der globalen Hydratvorkommen und deren stark variierende Ergebnisse besprochen, bevor das Phänomen koexistierender Hydratphasen mit unterschiedlicher Struktur und Zusammensetzung in der natürlichen Umgebung erläutert wird. Abschließend werden die verschiedenen direkten und indirekten Methoden zum Nachweis von Gashydratvorkommen in der Natur beschreiben.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-662-62778-5_5
  • Chapter length: 18 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   34.99
Price excludes VAT (USA)
  • ISBN: 978-3-662-62778-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   44.99
Price excludes VAT (USA)
Abb. 5.1
Abb. 5.2
Abb. 5.3
Abb. 5.4
Abb. 5.5
Abb. 5.6
Abb. 5.7

Literatur

  • Abid K, Spagnoli G, Teodoriu C, Falcone G (2015) Review of pressure coring systems for offshore gas hydrates research. Underw Technol 33(1):19–30

    CrossRef  Google Scholar 

  • Bender F (Hrsg) (1985) Angewandte Geowissenschaften Band II: Methoden der Angewandten Geophysik und mathematische Verfahren in den Geowissenschaften, Enke Verlag, Stuttgart

    Google Scholar 

  • Bernard BB, Brooks JM, Sackett WM (1976) Natural gas seepage in the Gulf of Mexico. Earth Planet Sci Lett 31:48–54

    CrossRef  Google Scholar 

  • Boetius A, Ravenschlag K, Schubert CJ, Rickert D, Widdel F, Gieseke A, Amann R, Jørgensen BB, Witte U, Pfannkuche O (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407:623–626

    CrossRef  Google Scholar 

  • Boswell R, Collett T (2011) Current perspectives on gas hydrate resources. Energy Environ Sci 4:1206–1215

    CrossRef  Google Scholar 

  • Edwards N (2005) Marine controlled source electromagnetics: principles, methodologies, future commercial applications. Surv Geophys 26(6):675–700

    CrossRef  Google Scholar 

  • Edwards RN (1997) On the resource evaluation of marine gas hydrate deposits using sea-floor transient electric dipole-dipole methods. Geophysics 62(1):63–74

    CrossRef  Google Scholar 

  • Haeckel M, Suess E, Wallmann K, Rickert D (2004) Rising methane gas bubbles form massive hydrate layers at the seafloor. Geochim Cosmochim Acta 68(21):4335–4345

    CrossRef  Google Scholar 

  • Jin Y, Kida M, Yoneda J, Konno Y, Oshima M, Tenma N, Nagao J (2020) Natural gas hydrates recovered from the umitaka spur in the joetsu basin, japan: coexistence of two structure-i hydrates with distinctly different textures and gas compositions within a massive structure. ACS Earth Space Chem 4:77–85

    CrossRef  Google Scholar 

  • Kastner M, Kvenvolden KA, Lorenson TD (1998) Chemistry, isotopic composition, and origin of a methane-hydrogen sulfide hydrate at the Cascadia subduction zone. Earth Planet Sci Lett 156:173–183

    CrossRef  Google Scholar 

  • Klapp SA, Murshed MM, Pape T, Klein H, Bohrmann G, Brewer PG, Kuhs WF (2010) Mixed gas hydrate structures at the Chapopote Knoll, southern Gulf of Mexico. Earth Planet Sci Lett 299:207–217

    CrossRef  Google Scholar 

  • Klauda JB, Sandler SI (2005) Global distribution of methane hydrate in ocean sediment. Energy Fuel 19:459–470

    CrossRef  Google Scholar 

  • Klitzke P, Luzi-Helbing M, Schicks JM, Cacace M, Jacquey AB, Sippel J, Scheck-Wenderoth M, Faleide JI (2016) Gas hydrate stability zone of the Barents Sea and Kara Sea region. Energy Procedia 97:302–309

    CrossRef  Google Scholar 

  • Kvenvolden KA, Grantz A (1990) Gas hydrates of the Arctic Ocean region. In: Grantz A, Johnson L, Sweeney JF (Hrsg) The Arctic ocean region. The Geology of North America, L Geological Society of America, Boulder, Colorado, S 539–549

    Google Scholar 

  • Kvenvolden KA, Lorenson TD (2001) The global occurrence of natural gas hydrates. In: Paull CK, Dillon WP (Hrsg) Natural gas hydrates: occurrence, distribution, and detection (geophysical monograph), Bd 124. AGU, Washington, D C, S 3–18

    Google Scholar 

  • Kvenvolden KA, Barnard LA, Cameron DH (1983) Pressure core barrel: application to the study of gas hydrates, deep sea drilling project site 533, leg 76. Initial Reports DSDP, 76: Washington, DC, 367–375

    Google Scholar 

  • Lapham LL, Wilson RM, Chanton JP (2012) Pressurized laboratory experiments show no stable carbon isotope fractionation of methane during gas hydrate dissolution and dissociation. Rapid Commun Mass Spectrom 26:32–36

    CrossRef  Google Scholar 

  • Liu X, Flemings PB (2011) Capillary effects on hydrate stability in marine sediments. J Geophys Res 116:B07102

    Google Scholar 

  • Lu H, Seo Y-T, Lee J-W, Moudrakovski I, Ripmeester JA, Chapman NR, Coffin RB, Gardner G, Pohlman J (2007) Complex gas hydrate from the Cascadia margin. Nature 445:303–306

    CrossRef  Google Scholar 

  • Lu Z, Zhu Y, Zhang Y, Wen H, Li Y, Liu C (2011) Gas hydrate occurrences in Qilian Mountain permafrost, Qinghai Province. China. Cold Reg Sci Technol 66:93–104

    CrossRef  Google Scholar 

  • Luzi M, Schicks JM, Erzinger J (2011) Carbon Isotopic Fractionation of Synthetic Methane and Carbon Dioxide Hydrates. In: Proceedings of the 7th international conference on gas hydrates, Edinburgh, United Kingdom, Paper-No.: 190

    Google Scholar 

  • Makogon YF (1966) Features of natural gas fields exploitation in permafrost. Gazovaya Promyshlennost 9:3–17

    Google Scholar 

  • Makogon YF (2010) Natural gas hydrates – a promising source of energy. J Nat Gas Sci Eng 2:49–59

    CrossRef  Google Scholar 

  • Milkov AV (2004) Global estimates of hydrate-bound gas in marine sediments: how much is really out there? Earth-Science Reviews 66:183–197

    Google Scholar 

  • Milkov AV (2005) Molecular and stable isotope compositions of natural gas hydrates: a revised global dataset and basic interpretations in the context of geological settings. Org Geochem 36:681–702

    CrossRef  Google Scholar 

  • Möller P (1986) Anorganische Geochemie – Eine Einführung. Springer, Berlin, S 243 ff

    CrossRef  Google Scholar 

  • Moridis GJ, Collett TS, Boswell R, Kiruhara M, Reagan MT, Koh C, Sloan ED (2009) Towards production from gas hydrates, current status, assessment of resources, and simulation-based evaluation of technology and potential. SPE Reserv Eval Eng 12:745–771

    CrossRef  Google Scholar 

  • Ostanin I, Anka Z, di Primio R, Bernal A (2013) Hydrocarbon plumbing systems above the Snøhvit gas field: structural control and implications for thermogenic methane leakage in the Hammerfest Basin, SW Barents Sea. Mar Pet Geol 43:127–146

    CrossRef  Google Scholar 

  • Schicks JM, Spangenberg E (2014) Gashydrate: Perspektiven und Risiken für Energiegewinnung und CO2-Speicherung. In: Energie - Forschung und Konzepte, Vorträge auf der DPG-Frühjahrstagung in Berlin 2014, Hrsg. Hardo Bruhns, Deutsche Physikalische Gesellschaft e.V., Bad Honnef, 92–104

    Google Scholar 

  • Sloan ED, Koh CA (2008) Clathrate hydrates of natural gases, 3. Aufl. CRC Press, Boca Raton

    Google Scholar 

  • Suess E, Torres ME, Bohrmann G, Collier RW, Rickert D, Goldfinger C, Linke P, Heuser A, Sahling H, Heeschen K, Jung C, Nakamura K, Greinert J, Pfannkuche O, Trehu A, Klinkhammer G, Whiticar MJ, Eisenhauer A, Teichert B, Elvert M (2001) Sea floor methane hydrates at hydrate ridge, cascadian margin. In: Paull CK, Dillon WP (Hrsg) Natural gas hydrates – occurrence, distribution, and detection. American Geophysical Union, Washington DC, S 87–98

    Google Scholar 

  • Wallmann K, Schicks J (2018) Gas hydrates as an unconventional hydrocarbon resource. In: Wilkes H (Hrsg) Hydrocarbons, oils and lipids: diversity, origin, chemistry and fate, (Handbook of Hydrocarbon and Lipid Microbiology). Springer International Publishing, Cham, S 1–17

    Google Scholar 

  • Waite WF, Ruppel CD, Boze LG, Lorenson TD, Buczkowski BJ, McMullen KY, Kvenvolden KA (2020) Preliminary global database of known and inferred gas hydrate locations: U.S. Geological Survey data release, https://doi.org/10.5066/P9llFVJM

  • Wallmann K, Pinero E, Burwicz E, Haeckel M, Hensen C, Dale A, Ruepke L (2012) The global inventory of methane hydrate in marine sediments: a theoretical approach. Energies 5:2449–2498

    CrossRef  Google Scholar 

  • Wei J, Fang Y, Lu H, Lu H, Lu J, Liang J, Yang S (2018) Distribution and characteristics of natural gas hydrates in the Shenhu Sea Area, South China Sea. Mar Pet Geol 98:622–628

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judith M. Schicks .

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Schicks, J.M. (2021). Gashydratvorkommen in der Natur. In: Gashydrate – Eine Einführung in Grundlagenforschung und Anwendung. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-62778-5_5

Download citation