Skip to main content

Bildung und Wachstum von Gashydraten – Labor versus Natur

  • Chapter
  • First Online:
Gashydrate – Eine Einführung in Grundlagenforschung und Anwendung
  • 535 Accesses

Zusammenfassung

In Kap. 3 werden die grundlegenden thermodynamischen Voraussetzungen zur Bildung von Gashydraten vermittelt. Es werden verschiedene Erklärungsansätze zur Keimbildung, wie die Theorie der labilen Cluster, die Theorie der lokalen Strukturänderung, die Theorie der Keimbildung an der Grenzfläche zwischen wässriger Phase und Gasphase sowie die Keimbildung aus der Eisphase vorgestellt. Im Anschluss an die Keimbildung wird das weitere Hydratwachstum auf molekularer Ebene beschrieben. Anschließend werden experimentelle Hinweise im Hinblick auf eine Verifizierung der verschiedenen Modelle ausgewertet. Abschließend werden mögliche Einflüsse von Sedimenten, Mikroorganismen und Salinität der wässrigen Phase auf die Hydratbildung beschrieben. In einem Exkurs werden Grundlagen zur Löslichkeit von Gasen in der wässrigen Phase und deren Abhängigkeit von der Anwesenheit einer Hydratphase vermittelt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 39.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • AirLiquid (2009) Das 1×1 der Gase – Physikalische Daten für Wissenschaft und Praxis. AirLiquid Deutschland GmbH, Karten Druck & Medien GmbH, Mönchengladbach

    Google Scholar 

  • Ballard AL, Sloan ED (2002) The next generation of hydrate prediction: an overview. J Supramol Chem 2:385–392

    Article  Google Scholar 

  • Chen D-F, Su Z, Cathles LM (2006) Types of gas hydrates in marine environments and their thermodynamic characteristics. Terr Atmospheric Ocean Sci J 17(4):723–737

    Article  Google Scholar 

  • Christiansen RL, Sloan ED (1994) Mechanism and kinetics of hydrate formation. In: Sloan ED, Happel J, Hnatow MA (Hrsg) International conference on natural gas hydrates, Bd 715. Annals of the New York Academy of Science, New Paltz, New York, S 283–305

    Google Scholar 

  • Clennell MB, Hovland M, Booth JS, Henry P, Winters WJ (1999) Formation of natural gas hydrates in marine sediments 1. Conceptual model of gas hydrate growth conditioned by host sediment properties. J Geophys Res Solid Earth 104:22985–23003

    Article  Google Scholar 

  • Clennell MB, Henry P, Hovland M, Booth JS, Winters WJ, Thomas M (2000) Formation of natural gas hydrates in marine sediments – gas hydrate growth and stability conditioned by host sediment properties. Ann NY Acad Sci 912:887–896

    Article  Google Scholar 

  • Dec SF (2009) Clathrate hydrate formation: dependence on aqueous hydration number. J Phys Chem 113:12355–12361

    Google Scholar 

  • Freer EM, Selim SM, Sloan ED (2001) Methane hydrate film growth kinetics. Fluid Phase Equilib 185:65–75

    Article  Google Scholar 

  • Geiger A, Rahman A, Stillinger FH (1979) Molecular dynamics study of the hydration of LennardJones solutes. J Chem Phys 70:263–276

    Article  Google Scholar 

  • Genov G, Kuhs WF, Staykova DK, Goreshnik E, Salamatin AN (2004) Experimental studies on the formation of porous gas hydrates. Am Mineral 89:1228–1239

    Article  Google Scholar 

  • Heeschen KU, Schicks JM, Oeltzschner G (2016) The promoting effect of natural sand on methane hydrate formation: Grain sizes and mineral composition. Fuel 181:139–147

    Google Scholar 

  • Henning RW, Schultz AJ, Thieu V, Halpern Y (2000) Neutron diffraction studies of CO2 clathrate hydrate: formation from deuterated ice. J Phys Chem A 104:5066–5071

    Article  Google Scholar 

  • Henry P, Thomas M, Clennel B (1999) Formation of natural gas hydrates in marine sediments 2. Thermodynamic calculations of stability conditions in porous sediments. J Geophys Res 104:23005–23022

    Google Scholar 

  • Hu Y, Makogon TY, Karanjkar P, Lee K-H, Lee BR, Sum AK (2017) Gas hydrates phase equilibria and formation from high concentration NaCl brines up to 200 MPa. J Chem Eng Data 62:1910–1918

    Article  Google Scholar 

  • Hwang MJ, Wright DA, Kapur A, Holder GD (1990) An experimental study of crystallization and crystal growth of methane hydrates from melting ice. J Incl Phenom Mol Recognit Chem 8:103–116

    Article  Google Scholar 

  • Jacobson LC, Hujo W, Molinero V (2010) Nucleation pathways of clathrate hydrates: effect of guest size and solubility. J Phys Chem B 114:13796–13809

    Article  Google Scholar 

  • Jacobson LC, Matsumoto M, Molinero V (2011) Order parameters for the multistep crystallization of clathrate hydrates. J Chem Phys 135:074501-1–074501-7

    Article  Google Scholar 

  • Kalogerakis N, Jamaluddin AKM, Dholabhai PD, Bishnoi PR (1993) Effect of surfactants on hydrate formation kinetics. In: SPE international symposium on oilfield chemistry, New Orleans, SPE 22188:375–383

    Google Scholar 

  • Kashchiev D, Firoozabadi A (2002) Driving force for crystallization of gas hydrates. J Cryst Growth 241:220–230

    Article  Google Scholar 

  • Ke W, Svartaas TM, Chen D (2019) A review of gas hydrate nucleation theories and growth models. J Nat Gas Sci Eng 61:169–196

    Article  Google Scholar 

  • Kelleher BP, Simpson AJ, Rogers RE, Dearman J, Kingery WL (2007) Effects of natural organic matter from sediments on the growth of marine gas hydrates. Mar Chem 103(3–4):237–249

    Article  Google Scholar 

  • Kleber W, Bautsch H-J, Bohm KJ, Klimm D (2010) Einführung in die Kristallographie, 19. Aufl. Oldenbourg, Muenchen/Wien

    Book  Google Scholar 

  • Kuhs WF, Staykova DK, Salamantin AN (2006) Formation of Methane Hydrate from Polydisperse Ice Powders. J Phys Chem B 110:13283–13295

    Article  Google Scholar 

  • Kvamme B. (1996) A new theory for the kinetics of hydrate formation. In: Proceedings of the 2nd international conference on gas hydrates, Toulouse, Frankreich, 139–146

    Google Scholar 

  • Lanoil BD, Sassen R, La Duc MT, Sweet ST, Nealson KH (2001) Bacteria and archaea physically associated with gulf of mexico gas hydrates. Appl Environ Microbiol 67(11):5143–5153

    Article  Google Scholar 

  • Liu K, Cruzan JD, Saykally RJ (1996) Water clusters. Science 271:929–933

    Article  Google Scholar 

  • Long J (1994) Gas hydrate formation mechanism and its kinetic inhibition, PhD Thesis. Colorado School of Mines, Golden, USA

    Google Scholar 

  • Ludwig R (2001) Wasser: von Clustern in die Flüssigkeit. Angew Chem 113:1856–1876

    Article  Google Scholar 

  • Malagar BRC, Lijith KP, Singh DN (2019) Formation and dissociation of methane gas hydrates in sediments: a critical review. J Nat Gas Sci Eng 65:168–184

    Article  Google Scholar 

  • Mekala P, Babu P, Sangwai JS, Linga P (2014) Formation and dissociation kinetics of methane hydrates in seawater and silica sand. Energy Fuel 28:2708–2716

    Article  Google Scholar 

  • Meyer K (1968) Physikalisch-chemische Kristallographie, VEB Verlag für Grundstoffindustrie, Leipzig, 225

    Google Scholar 

  • Moon C, Taylor PC, Roger PM (2003) Molecular dynamics study of gas hydrate formation. J Am Chem Soc 125:4706–4707

    Article  Google Scholar 

  • Ohno HS Dec SF, Sloan ED, Koh CA (2008) In situ NMR measurements of Ch4 + C2H6 hydrate reformation. Proceedings of the 6th international conference on gas hydrates, Vancouver, Kanada

    Google Scholar 

  • Ou W, Lu W, Ning P, Wu X (2019) Measurements of methane solubility in pure water in equilibrium with hydrate by using high-pressure optical capillary cell. Mar Chem 212:74–82

    Article  Google Scholar 

  • Pauling L (1964) Die Natur der chemischen Bindung, 2. Aufl. Chemie, Weinheim, 438

    Google Scholar 

  • Pietrass T, Gaede HC, Bifone A, Pines A, Ripmeester JA (1995) Monitoring xenon clathrate hydrate formation on ice surfaces with optically enhanced 129Xe NMR. J Am Chem Soc 117:7520–7525

    Article  Google Scholar 

  • Radhakrishnan R, Trout BL (2002) A new approach for studying nucleation phenomena using molecular simulations: application to CO2 hydrate clathrates. J Chem Phys 117(4):1786–1796

    Article  Google Scholar 

  • Rahman A, Stillinger FH (1973) Hydrogen-bond patterns in liquid water. J Am Chem Soc 95:7943–7948

    Article  Google Scholar 

  • Riestenberg D, West O, Lee S, McCallum S, Phelps TJ (2003) Sediment surface effects on methane hydrate formation and dissociation. Mar Geol 198:181–190

    Article  Google Scholar 

  • Rogers R, Zhang G, Dearman J, Woods C (2007) Investigations into surfactant/gas hydrate relationship. J Pet Sci Eng 56(1-3):82–88

    Article  Google Scholar 

  • Rogers RE, Kothapalli C, Lee MS, Woolsey JR (2003) Catalysis of gas hydrates by biosurfactants in seawater-saturated sand/clay. Can J Chem Eng 81(5):973–980

    Article  Google Scholar 

  • Schicks J, Luzi-Helbing M (2015) Kinetic and thermodynamic aspects of clathrate hydrate nucleation and growth. J Chem Eng Data 60:269–277

    Article  Google Scholar 

  • Schicks JM, Luzi-Helbing M (2013) Cage occupancy and structural changes during hydrate formation from initial stages to resulting hydrate phase. Spectrochim Acta A Mol Biomol Spectrosc 115:528–536

    Article  Google Scholar 

  • Servio P, Englezos P (2002) Measurement of dissolved methane in water in equilibrium with its hydrate. J Chem Eng Data 47:87–90

    Article  Google Scholar 

  • Sloan ED, Fleyfel F (1991) A molecular mechanism for gas hydrate nucleation from ice. AIChE J 37(9):1281–1292

    Article  Google Scholar 

  • Sloan ED, Koh CA (2008) Clathrate hydrates of natural gases, 3. Aufl. CRC Press, Boca Raton

    Google Scholar 

  • Spangenberg E, Priegnitz M, Heeschen K, Schicks J (2015) Are laboratory-formed hydrate-bearing systems analogous to those in nature? J Chem Eng Data 60(2):258–268

    Article  Google Scholar 

  • Staykova DK, Kuhs WF, Slamatin AN, Hansen T (2003) Formation of porous gas hydrates from ice powders: diffraction experiments and multistage model. J Phys Chem B 107:10299–10311

    Article  Google Scholar 

  • Subramanian S, Sloan ED (1999) Molecular measurements of methane hydrate formation. Fluid Phase Equilibria 158–160:813–820

    Google Scholar 

  • Subramanian S, Sloan ED (2000) Microscopic measurements and modeling of hydrate formation kinetics. In: Holder GD, Bishnoi PR (Hrsg) Gas hydrates: challenges for the future. Annals of the New York Academy of Science, 912:583–592

    Google Scholar 

  • Subramanian S, Kini RA, Dec SF, Sloan ED (2000) Evidence of structure II hydrate formation from methane+ethane mixtures. Chem Eng Sci 55:1981–1999

    Article  Google Scholar 

  • Takeya S, Hondoh T, Uchida T (2000) In situ observation of CO2 hydrate by X-ray diffraction. Ann NY Acad Sci 912:973–982

    Article  Google Scholar 

  • Uchida T, Ebinuma T, Kawabata J, Narita H (1999) Microscopic observations of formation processes of clathrate-hydrate films at an interface between water and carbon dioxide. J Cryst Growth 204:348–356

    Article  Google Scholar 

  • Vafaei MT, Kvamme B, Chejara A, Jemai K (2014) A new reservoir simulator for studying hydrate dynamics in reservoir. Int J Greenhouse Gas Control 23:12–21

    Article  Google Scholar 

  • Walsh MR, Koh CA, Sloan ED, Sum AK, Wu DT (2009) Microsecond simulations of spontaneous methane hydrate nucleation and growth. Science 326:1095–1098

    Article  Google Scholar 

  • Wang X, Schultz AJ, Halpern Y (2002) Kinetics of Methane Hydrate Formation from Polycrystalline Deuterated Ice. J Phys Chem A 106:7304–7309

    Google Scholar 

  • Wedler G, Freund H-J (2012) Lehrbuch der Physikalischen Chemie, 6., vollst. überarb. u. akt. Aufl. Wiley-VCH, 313–315. Weinheim, Deutschland

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judith M. Schicks .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schicks, J.M. (2021). Bildung und Wachstum von Gashydraten – Labor versus Natur. In: Gashydrate – Eine Einführung in Grundlagenforschung und Anwendung. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-62778-5_3

Download citation

Publish with us

Policies and ethics