J. Otto, B. Vogel-Heuser, and O. Niggemann. Online parameter estimation for cyber-physical production systems based on mixed integer nonlinear rogramming, process mining and black-box optimization techniques. at-Automatisierungstechnik, 66(4):331–343, 2018.
Google Scholar
G. Reinhart, S. Krug, S. Huttner, Z. Mari, F. Riedelbauch, and M. Schlogel. Automatic configuration (plug & produce) of industrial ethernet networks. In Proc. 9th IEEE/IAS International Conference on Industry Applications (INDUSCON), pages 1–6, Sao Paulo, Brazil, nov 2010.
Google Scholar
J. Otto, B. Vogel-Heuser, and O. Niggemann. Automatic parameter estimation for reusable software components of modular and reconfigurable cyber-physical production systems in the domain of discrete manufacturing. IEEE Transactions on Industrial Informatics, 14(1):275–282, 2018.
Google Scholar
L. Monostori, B. K´ad´ar, T. Bauernhansl, S. Kondoh, S. Kumara, G. Reinhart, O. Sauer, G. Schuh, W. Sihn, and K. Ueda. Cyber-physical systems in manufacturing. International Academy for Production Engineering Annals, 65(2):621–641, 2016.
Google Scholar
D. Hossain, G. Capi, M. Jindai, and S. Kaneko. Pick-place of dynamic objects by robot manipulator based on deep learning and easy user interface teaching systems. Industrial Robot: the international journal of robotics research and application, 44(1):11–20, 2017.
Google Scholar
S. Jeschke, C. Brecher, T. Meisen, D. ¨ Ozdemir, and T. Eschert. Industrial internet of things and cyber manufacturing systems, pages 3–19. Springer International Publishing, 2017.
Google Scholar
C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R. Fergus. Intriguing properties of neural networks. In Proc. of the 2nd International Conference on Learning Representations (ICLR), Banff, Canada, apr 2014.
Google Scholar
K. Stouffer, J. Falco, and K. Scarfone. Guide to industrial control systems (ics) security. NIST special publication, 800(82):16, 2011.
Google Scholar
I. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing adversarial examples. In Proc. of the 3rd International Conference on Learning Representations (ICLR), San Diego, USA, may 2015.
Google Scholar
N. Carlini and D. Wagner. Towards evaluating the robustness of neural networks. In Proc. of the 38th IEEE Symposium on Security and Privacy (SP), pages 39–57, San Jose, USA, may 2017.
Google Scholar
Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083, 2017.
N. Papernot, P. McDaniel, and I. Goodfellow. Transferability in machine learning: from phenomena to black-box attacks using adversarial samples. Computing Research Repository (CoRR), abs/1605.07277, 2016.
Google Scholar
N. Papernot and P. McDaniel. On the effectiveness of defensive distillation. Computing Research Repository (CoRR), abs/1607.05113, 2016.
Google Scholar
W. Xu, D. Evans, and Y. Qi. Feature squeezing: Detecting adversarial examples in deep neural networks. Computing Research Repository (CoRR), abs/1704.01155, 2017.
Google Scholar
M. McCann and A. Johnston. Uci ml repository secom dataset, 2008. [Online; accessed 2018-02-05].
Google Scholar
M. Abadi et al. Tensorflow: A system for large-scale machine learning. In Proc. of the 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI), volume 16, pages 265–283, Savannah, USA, nov 2016.
Google Scholar
DP. Kingma and J. Ba. Adam: A method for stochastic optimization. Computing Research Repository (CoRR), abs/1412.6980, 2014.
Google Scholar
I. Goodfellow, N. Papernot, and P. McDaniel. cleverhans v2.0.0.: an adversarial machine learning library. Computing Research Repository (CoRR), abs/1610.00768, 2016.
Google Scholar