Skip to main content

Pluton und Batholith

  • Chapter
  • First Online:
Granit - Geschichte und Bedeutung
  • 1254 Accesses

Anmerkung

Granit – soweit das Auge blickt. Der Korsisch-Sardische Batholith ist einer der größten Granitkomplexe Europas. Man trifft darin auf unterschiedlichste Landschaften: Hochflächen, tief eingeschnittene Täler und nur schwer zugängliche Gebirge. Der „Batholith“ – ein Begriff, einst geschaffen für Granite, die sich in „unendliche Teufe“ erstrecken und unermesslichen Raum in Anspruch nehmen – was ist aus dieser Idee geworden?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

Allgemein

  • Acocella V (2000): Space accommodation by roof lifting during pluton emplacement at Amiata (Italy). Terra Nova 12:149–155.

    Article  Google Scholar 

  • Bagdonas DA, Frost CD, Fanning CM (2016) The origin of extensive Neoarchean high-silica batholiths and the nature of intrusive complements to silicic ignimbrites: Insights from the Wyoming batholith, U.S.A. American Mineralogist 101:1332–1347.

    Article  Google Scholar 

  • Breitkreutz C, Petford N (2004) Physical Geology of High Level Magmatic Systems: Introduction. Geological Society of London, Spec. Publication 234:1–4.

    Article  Google Scholar 

  • Breitkreutz C, Rocchi S (Hrsg.) (2018) Physical Geology of Shallow Magmatic Systems: Dykes, Sills and Laccoliths. Springer, Berlin.

    Google Scholar 

  • Burchardt, Steffi (Hrsg) (2018) Volcanic and Igneous Plumbing Systems: Understanding Magma Transport, Storage, and Evolution in the Earth‘s Crust. Elsevier, Amsterdam.

    Google Scholar 

  • Cruden AR (1998) On the emplacement of tabular granites. Journal Geol. Soc. London 155:853–862

    Article  Google Scholar 

  • Cruden AR, Weinberg RF (2018) Mechanisms of Magma Transport and Storage in the Lower and Middle Crust – Magma Segregation, Ascent and Emplacement. In: Burchard, S. (Hrsg.), Volcanic and Igneous Plumbing Systems:13–53.

    Google Scholar 

  • Elston WE (2008) When batholiths exploded: The Mogollon-Datil volcanic field, southwestern New Mexico. In New Mexico Geological Society, 59th Annual Field Conference Guidebook:117–128.

    Google Scholar 

  • Le Fort P (1986) Metamorphism and magmatism during the Himalayan collision. Geological Society, London, Special Publications, 19:159–172.

    Article  Google Scholar 

  • Lipman PW, Bachmann O (2015) Ignimbrites to batholiths: Integrating perspectives from geological, geophysical, and geochronological data. Geosphere 11:705–743.

    Article  Google Scholar 

  • Petterson MG, Treloar PJ (2004) Volcanostratigraphy of arc volcanic sequences in the Kohistan arc, North Pakistan: volcanism within island arc, back-arc-basin, and intra-continental tectonic settings. Journal of Volcanology and Geothermal Research, 130:147–178.

    Article  Google Scholar 

  • Pitcher WS (1993) The nature and origin of granite. Chapman and Hall, London.

    Book  Google Scholar 

  • Savov I, Meliksetian K., Ralf, H, Gevorg N et al. (2014) Collision zone magmatism aids continental crustal growth. EGUGA:2235.

    Google Scholar 

  • Skidmore CN (2013) Exploring connections between a very large volume igmimbrite and an intracaldera pluton: Intrusions related to the Oligocene Wah Wah Springs Tuff, Western US. - Thesis Master of Science (Brigham Young University), Utah.

    Google Scholar 

  • Srimal N, Basu A., Kyser, TK (1987) Tectonic inferences from oxygen isotopes in volcano-plutonic complexes of the India‐Asia Collision Zone, NW India. Tectonics, 6:261–273.

    Article  Google Scholar 

  • Vigneresse JL (1995a) Control of granite emplacement by regional deformation. Tectonophysics, 249:173–186.

    Article  Google Scholar 

  • Vigneresse JL (1995b) Crustal regime of deformation and ascent of granitic magma. Tectonophysics, 249:187–202.

    Article  Google Scholar 

  • Wang, J. H., Yin, A., Harrison, T. M., Grove, M., Zhang, Y. Q., & Xie, G. H. (2001). A tectonic model for Cenozoic igneous activities in the eastern Indo–Asian collision zone. Earth and Planetary Science Letters, 188:123–133.

    Article  Google Scholar 

  • Weinberg, R. F., & Dunlap, W. J. (2000). Growth and deformation of the Ladakh Batholith, Northwest Himalayas: implications for timing of continental collision and origin of calc-alkaline batholiths. The Journal of Geology, 108:303–320.

    Article  Google Scholar 

  • WIKIPEDIA: Batholith; zuletzt abgerufen 20. März 2020

    Google Scholar 

Alpen

  • Blanckenburg Fv, Davies JH (1995) Slab breakoff: a model for syncollisional magmatism and tectonics in the Alps. Tectonics, 14:120–131.

    Article  Google Scholar 

  • Broderick C, Wotzlaw JF, Frick DA, Gerdes A, Ulianov A, Günther D, Schaltegger U (2015) Linking the thermal evolution and emplacement history of an upper-crustal pluton to its lower-crustal roots using zircon geochronology and geochemistry (southern Adamello batholith, N. Italy). Contributions to Mineralogy and Petrology, 170:28.

    Google Scholar 

  • Martin S, Macera P (2014) Tertiary volcanism in the Italian Alps (Giudicarie fault zone, NE Italy): insight for double alpine magmatic arc. Italian Journal of Geosciences, 133:63–84.

    Article  Google Scholar 

  • Schaltegger U, Brack P, Ovtcharova M, Peytcheva I, Schoene B et al (2009) Zircon and titanite recording 1.5 million years of magma accretion, crystallization and initial cooling in a composite pluton (southern Adamello batholith, northern Italy). Earth and Planetary Science Letters, 286:208–218.

    Article  Google Scholar 

  • Skopelitis A, Bindeman I, Ulianov A, Gerdes A, Brack P, Schaltegger U (2012) Are there tonalites and tonalites? Disentangling the processes and sources of tonalites from the Adamello Batholith (Italian Alps). EGUGA, 8129.

    Google Scholar 

  • Tiepolo M, Tribuzio R., Ji WQ, Wu FY, Lustrino M (2014) Alpine Tethys closure as revealed by amphibole-rich mafic and ultramafic rocks from the Adamello and the Bergell intrusions (Central Alps). Journal of the Geological Society, 171:793–799.

    Article  Google Scholar 

Anatolien Kollisionszone

  • Aydin F, Schmitt AK, Siebel W, Sönmez M et al. (2014) Quaternary bimodal volcanism in the Niğde Volcanic Complex (Cappadocia, central Anatolia, Turkey): age, petrogenesis and geodynamic implications. Contributions to Mineralogy and Petrology 168:1078.

    Article  Google Scholar 

  • Kamacı Ö, Altunkaynak Ş (2020) The role of accreted continental crust in the formation of granites within the Alpine style continental collision zone: Geochemical and geochronological constrains from leucogranites in the Çataldağ Metamorphic Core Complex (NW Turkey). Lithos 354:105347.

    Article  Google Scholar 

  • Keskin M (2007) Eastern Anatolia: a hotspot in a collision zone without a mantle plume. Special Papers-Geological Society of America 430: 693.

    Google Scholar 

  • Kheirkhah M, Allen MB, Emami M (2009) Quaternary syn-collision magmatism from the Iran/Turkey borderlands. Journal of Volcanology and Geothermal Research, 182:1–12.

    Article  Google Scholar 

  • Kamacı Ö, Altunkaynak Ş (2020) The role of accreted continental crust in the formation of granites within the Alpine style continental collision zone: Geochemical and geochronological constraints from leucogranites in the Çataldağ Metamorphic Core Complex (NW Turkey). Lithos 354:105347.

    Article  Google Scholar 

  • Neill I, Meliksetian K, Allen MB, Navarsardyan G, Karapetyan S (2013) Pliocene–Quaternary volcanic rocks of NW Armenia: magmatism and lithospheric dynamics within an active orogenic plateau. Lithos 180:200–215.

    Article  Google Scholar 

  • Pearce JA, Bender JF, De Long SE, Kidd WSF et al (1990). Genesis of collision volcanism in Eastern Anatolia, Turkey. Journal of Volcanology and Geothermal Research, 44(1–2):189–229.

    Article  Google Scholar 

  • Schumacher R, Mues-Schumacher U (1996) The Kizilkaya ignimbrite—an unusual low-aspect-ratio ignimbrite from Cappadocia, central Turkey. Journal of Volcanology and Geothermal Research, 70:107–121.

    Google Scholar 

  • Temel A, Gündoğdu MN, Gourgaud A, Le Pennec, JL (1998) Ignimbrites of Cappadocia (central Anatolia, Turkey): petrology and geochemistry. Journal of Volcanology and Geothermal Research, 85:447–471.

    Article  Google Scholar 

Böhmisches Massiv

  • Hecht L. Vigneresse JL, Morteani G (1997) Constraints on the origin of zonation of the granite complexes in the Fichtelgebirge (Germany and Czech Republic): evidence from a gravity and geochemical study. Geol. Rundsch. 86 Suppl.:93–109.

    Google Scholar 

  • Siebel W, Trzebski R, Stettner G et al. (1997) Granitoid magmatism of the NW Bohemian massif revealed: gravity data, composition, age relations and phase concept. Geol. Rundsch. 86 Suppl.:45–63.

    Google Scholar 

  • Trzebski R, Behr HJ, Conrad W (1997) Subsurface distribution and tectonic setting of the late-Variscan granites in the northwestern Bohemian Massif. Geol. Runds h. 86 Supp.:64–78.

    Google Scholar 

  • Zulauf G, Maier M, Stöckhert B (1997) Depth of intrusion and thermal modelling of the Falkenberg granite (Oberpfalz, Germany). Geol. Rundsch. 86 Suppl.:87–92.

    Google Scholar 

Cornubischer Batholith

  • Brenchley PJ, Rawson P (Hg)(2006) The Geology of England and Wales. Geological Society Publishing House.

    Google Scholar 

  • Chappel B, Hine R (2008) The Cornubian Batholith: an example of Magmatic Fractionation on a Crustal Scale. Resource Geology 56:203–244.

    Article  Google Scholar 

  • Cosgrove ME, Elliott MH (1976) Suprabatholithic volcanism of the southwest England granites. Proc. Ussher Soc. 3 (3):391–401.

    Google Scholar 

  • Pownall JM, Waters DJ, Searle MP et al. (2012) Shallow laccolithic emplacement of the Land‘s End and Tregonning granites, Cornwall, UK: Evidence from aureole field relations and P-T modeling of cordierite-anthophyllite hornfels. Geospehre 8:1467–1504.

    Article  Google Scholar 

  • Stone M (1992) The Tregonning granite: petrogenesis of Li-mica granites in the Cornubian batholith. Mineralogical Magazine 56:141–155.

    Article  Google Scholar 

Korsisch-Sardischer Batholith

  • Casini L, Cuccuru S et al. (2015): Evolution of the Corsica-Sardinia Batholith and late-orogenic shearing of the Variscides. Tectonophysica 646:65–78.

    Article  Google Scholar 

  • Casini L, Cuccur S, Maino M, Oggioano G, Tiepolo M (2012) Emplacement of the Arzachena Pluton (Corsica-Sardinia Batholith) and the geodynamics of incoming Pangea. Tectonophysics 544–545:31–49.

    Article  Google Scholar 

  • Cortesogno L, Cassinis G, Dallagiovanna L et al. (1998) The Varican post-collisional volcanism in Late Carboniferous-Permian Sequences of Ligurian Alps, Southern Alps and Sardinia (Italy): a synhesis. Lithos 45:305–328.

    Article  Google Scholar 

  • Paquette JL, Ménot RP, Pin C, Orsini JB. (2003) Episodic and short-lived granitic pulses in a post-collisional setting: evidence from precise U–Pb zircon dating through a crustal cross-section in Corsica. Chemical geology, 198(1–2):1–20.

    Article  Google Scholar 

  • Rossi P (1991): Genesis of a Variscan batholith: Field, petrological and mineralogical evidence from the Corisca-Sardinia batholith. Tectonophysics 195:319–346.

    Article  Google Scholar 

  • Rossi P, Cocherie A, Fanning CM (2015) Evidence in Variscan Corsica of brief and voluminous Late Carboniferous to Early Permian volcanic-plutonic event contemporaneous with a higher-temperature/low-pressure metamorphic peak in the lower crust. Bulletin de la Société Géologique de France 186:171–192.

    Article  Google Scholar 

Küstenbatholith Peru

  • Atherton MP (1990) The Coastal Batholith of Peru: The product of rapid recycling of „new“ crust formed within rifted continental margin. Geol. Journ, 25:337–349.

    Article  Google Scholar 

  • Cobbing EJ, Pitcher WS (1983) Andean plutonism in Peru and its relationship to volcanism and metallogenesis at a segmented plate edge. Geological Society of America Memoir 159:277–291.

    Article  Google Scholar 

  • Haederle M, Atherton MP (2002) Shape and intrusion style of the Coastal Batholith, Peru. Tectonophysics 345:17–28.

    Article  Google Scholar 

  • Magririer A, Audin L, Robert X et al. (2016) Time and mode of exhumation of the Cordillera Blanca batholith (Peruvian Andes). Journ. Geophys. Res. Solid Earth 121:6235–6249.

    Article  Google Scholar 

  • Myers JS (1975) Cauldron subsidence and fluidization: mechanisms of intrusion of the Coastal Batholith of Peru into its own volcanic ejecta. GSA Bulletin 86: 1209–1220.

    Article  Google Scholar 

  • Petford N, Atherton MP (1996) Na-rich partial melts from newly underpaltes basaltic crust: the Cordillera Blanca Batholith, Peru. Journ. Petrol. 37:1491–1521.

    Article  Google Scholar 

  • Russel MA, Pitcher WS, Wilson PA (1976) Ring complexes of the Peruvian Coastal Batholith: a long-standing subvolcanic regime. Canadian Journ. Earth Sciences 13:1020–1030.

    Article  Google Scholar 

  • Thorpe RS, Francis PW (2012/1979) Petrogenetic relationships of volcanic and intrusive rocks of the Andes. In: Origin of Granite Batholith, Geochemical evidence, ed. Atherton MP, Tarney J.:65–75. Springer, Heidelberg.

    Google Scholar 

Liparische Inseln

  • Calanchi N, De Rosa R, Mazzuoli R et al. (1993) Silicic magma entering a basaltic magma chamber: eruptive dynamics and magma mixing – an example from Salina (Aeolian islands, Southern Tyrrhenian Sea). Bull. Volcan. 55:504–522.

    Article  Google Scholar 

  • Renzulli A, Serri G, Santi P, Mattioli M, Holm PM (2017) Origin of high-silica liquids at Stromboli volcano (Aeolian Islands, Italy) inferred from crustal xenoliths. Bull. Volcan. 62:400–419.

    Article  Google Scholar 

Sierra Nevada Batholith

  • Clemens-Knott D, Saleeny JB (1999) Impinging ring dike complexes in the Sierra Nevada batholith, California: Roots of the Early Cretacaeous volcanic arc. GSA Bulletin 114:484–496.

    Article  Google Scholar 

  • Bateman PC, Clark LD et al. (1963): The Sierra Nevada Batholith: A synthesis of recent work across the Central Part. Geological Survey Professional Paper 414-D. Washington: US Gov. Printing Office. iv + 46.

    Google Scholar 

  • Bateman PC, Eaton JP (1967): Sierra Nevada Batholith. Science 158:1407–1417.

    Article  Google Scholar 

  • Cecil MR, Rotberg GL et al. (2012): Magmatic growth and batholitic root development in the northern Sierra Nevada, Californa. Geospehre 8:592–606.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gottfried Hofbauer .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Der/die Autor(en), exklusiv lizenziert durch Springer-Verlag GmbH, DE, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hofbauer, G. (2021). Pluton und Batholith. In: Granit - Geschichte und Bedeutung. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-62724-2_17

Download citation

Publish with us

Policies and ethics