Zusammenfassung
Zellen im „Reagenzglas“, also in vitro, zu kultivieren, lässt sich grundsätzlich auf zwei verschiedene Arten und Weisen realisieren: zum einen auf einer Oberfläche, an der die Zellen anwachsen, proliferieren und bei Bedarf wieder abgelöst werden können, zum anderen als Suspensionskultur, also schwimmend in einem Nährmedium, ohne direkte Anhaftung an eine Oberfläche. Als 3D-Zellkulturen bezeichnet man sie dann, wenn Zellverbände in mehreren Lagen bzw. als Zellcluster vorliegen, die eine direkte Interaktion zwischen gleichen oder verschiedenen Zelltypen erlauben. Gegenüber zweidimensionalen Zellkulturen, in denen meist nur einen Zelltyp vorhanden ist, können diese 3D-Kulturen einzelne oder mehrere Aspekte der physiologischen Gegebenheiten in Lebewesen (in vivo) genauer darstellen.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Literatur
Achberger K, Probst C, Haderspeck JC, et al (2019) Merging organoid and organ-on-a-chip technology to generate complex multi-layer tissue models in a human retina-on-a-chip platform. Elife. https://doi.org/10.7554/eLife.46188
Birey F, Andersen J, Makinson CD, et al (2017) Assembly of functionally integrated human forebrain spheroids. Nature 545:54–59. https://doi.org/10.1038/nature22330
Dekkers JF, Wiegerinck CL, De Jonge HR, et al (2013) A functional CFTR assay using primary cystic fibrosis intestinal organoids. Nat Med 19:939–945. https://doi.org/10.1038/nm.3201
Eiraku M, Takata N, Ishibashi H, et al (2011) Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature 472:51–58. https://doi.org/10.1038/nature09941
Huh D (2015) A human breathing lung-on-a-chip. In: Annals of the American Thoracic Society. American Thoracic Society, pp S42–S44
Lancaster MA, Renner M, Martin CA, et al (2013) Cerebral organoids model human brain development and microcephaly. Nature 501:373–379. https://doi.org/10.1038/nature12517
Lukova, Roeselers, 2015, Chap 22 in Verhoeckx K, Cotter P, López-Expósito I, et al (2015) The impact of food bioactives on health: In vitro and Ex Vivo models. Springer International Publishing
Monteil V, Kwon H, Prado P, et al (2020) Inhibition of SARS-CoV-2 Infections in Engineered Human Tissues Using Clinical-Grade Soluble Human ACE2 In Brief Clinical-grade recombinant human ACE2 can reduce SARS-CoV-2 infection in cells and in multiple human organoid models. Inhibition of SARS-CoV-2 Infections in Engineered Human Tissues Using Clinical-Grade Soluble Human ACE2. Cell 181:905–913.e7. https://doi.org/10.1016/j.cell.2020.04.004
Nakano T, Ando S, Takata N, et al (2012) Self-formation of optic cups and storable stratified neural retina from human ESCs. Cell Stem Cell. https://doi.org/10.1016/j.stem.2012.05.009
Wimmer RA, Leopoldi A, Aichinger M, et al (2019) Generation of blood vessel organoids from human pluripotent stem cells. Nat Protoc 14:3082–3100. https://doi.org/10.1038/s41596-019-0213-z
Zhong X, Gutierrez C, Xue T, et al (2014) Generation of three-dimensional retinal tissue with functional photoreceptors from human iPSCs. Nat Commun. https://doi.org/10.1038/ncomms5047
Weiterführende Literatur
Assawachananont J, Mandai M, Okamoto S, et al (2014) Transplantation of embryonic and induced pluripotent stem cell-derived 3D retinal sheets into retinal degenerative mice. Stem Cell Reports 2:662–674. https://doi.org/10.1016/j.stemcr.2014.03.011
Clevers H (2020) COVID-19: organoids go viral. Nat Rev Mol Cell Biol 21:355–356. https://doi.org/10.1038/s41580-020-0258-4
Fatehullah A, Tan SH, Barker N (2016) Organoids as an in vitro model of human development and disease. Nat Cell Biol 18:246–254. https://doi.org/10.1038/ncb3312
Kim J, Koo BK, Knoblich JA (2020) Human organoids: model systems for human biology and medicine. Nat Rev Mol Cell Biol. https://doi.org/10.1038/s41580-020-0259-3
Rossi G, Manfrin A, Lutolf MP (2018) Progress and potential in organoid research. Nat Rev Genet 19:671–687. https://doi.org/10.1038/s41576-018-0051-9
Takahashi K, Yamanaka S (2006) Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors. Cell 126:663–676. https://doi.org/10.1016/j.cell.2006.07.024
Takebe T, Wells JM (2019) Organoids by design. Science (80-.) 364:956–959
Yui S, Nakamura T, Sato T, et al (2012) Functional engraftment of colon epithelium expanded in vitro from a single adult Lgr5 + stem cell. Nat Med 18:618–623. https://doi.org/10.1038/nm.2695
Zhou T, Tan L, Cederquist GY, et al (2017) High-Content Screening in hPSC-Neural Progenitors Identifies Drug Candidates that Inhibit Zika Virus Infection in Fetal-like Organoids and Adult Brain. Cell Stem Cell 21:274–283.e5. https://doi.org/10.1016/j.stem.2017.06.017
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature
About this chapter
Cite this chapter
Achberger, K., Antkowiak, L., Liebau, S. (2023). 3D-Zell- und Organoidkultur. In: Raem, A.M., Rauch, P. (eds) Immunoassays. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-62671-9_21
Download citation
DOI: https://doi.org/10.1007/978-3-662-62671-9_21
Published:
Publisher Name: Springer Spektrum, Berlin, Heidelberg
Print ISBN: 978-3-662-62670-2
Online ISBN: 978-3-662-62671-9
eBook Packages: Life Science and Basic Disciplines (German Language)