Skip to main content

Pathophysiologie: Genetik

  • Chapter
  • First Online:
Nicht-alkoholische Fettlebererkrankung

Zusammenfassung

Die nicht-alkoholische Fettleberkrankung („non-alcoholic fatty liver disease“, NAFLD) ist eine der häufigsten Leberkrankheiten mit steigender Inzidenz weltweit, die hauptsächlich durch die zunehmend kalorienreiche Ernährung von Kindern und Erwachsenen – kombiniert mit Bewegungsmangel – verursacht wird. Dadurch stellen die Fettlebererkrankungen eine der Hauptursachen für Zirrhose, hepatozelluläres Karzinom („hepatocellular carcinoma“, HCC) und leberbedingte Mortalität dar. Familiäre Clusterbildung und ethnische Unterschiede belegen, dass genetische Faktoren zur Fettlebererkrankung beitragen. Kürzlich wurde die Variante p.I148M des Leberenzyms PNPLA3 („patatin-like phospholipase domain-containing protein 3“) als Hauptdeterminante der nicht-alkoholischen Fettleber und Steatohepatitis sowie ihrer Folgen Zirrhose und Leberkrebs identifiziert, wobei die Steatose bei PNPLA3-assoziierter NAFLD nicht von Merkmalen des metabolischen Syndroms begleitet sein muss. PNPLA3 kodiert eine mit Lipidtröpfchen assoziierte, durch Kohlenhydrate und Fettsäuren induzierte Triacylglycerol-Lipase. Außerdem wurde gezeigt, dass eine Variante im TM6SF2-Gen überwiegend die hepatische Fettakkumulation moduliert, während eine Variante im MBOAT7-Gen die Fibroseempfänglichkeit erhöht. Die hohe Prävalenz der Risikoallele deutet darauf hin, dass zukünftig Genvarianten bei der diagnostischen Abklärung von Fettlebererkrankungen und der Überwachung der Patienten hilfreich sein könnten.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Literatur

  • Abul-Husn NS et al (2018) A protein-truncating HSD17B13 variant and protection from Chronic Liver Disease. N Engl J Med 378(12):1096–1106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adam M et al (2018) Hydroxysteroid (17beta) dehydrogenase 13 deficiency triggers hepatic steatosis and inflammation in mice. FASEB J 32(6):3434–3447

    Article  CAS  PubMed  Google Scholar 

  • Agius L (2016) Hormonal and metabolite regulation of hepatic glucokinase. Annu Rev Nutr 36:389–415

    Article  CAS  PubMed  Google Scholar 

  • Anstee QM, Seth D, Day CP (2016) Genetic factors that affect risk of Alcoholic and Nonalcoholic Fatty Liver Disease. Gastroenterology 150(8):1728–1744 e7

    Article  PubMed  Google Scholar 

  • BasuRay S et al (2017) The PNPLA3 variant associated with fatty liver disease (I148M) accumulates on lipid droplets by evading ubiquitylation. Hepatology 66(4):1111–1124

    Article  CAS  PubMed  Google Scholar 

  • Beer NL et al (2009) The P446L variant in GCKR associated with fasting plasma glucose and triglyceride levels exerts its effect through increased glucokinase activity in liver. Hum Mol Genet 18(21):4081–4088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buch S et al (2015) A genome-wide association study confirms PNPLA3 and identifies TM6SF2 and MBOAT7 as risk loci for alcohol-related cirrhosis. Nat Genet 47(12):1443–1448

    Article  CAS  PubMed  Google Scholar 

  • Burza MA et al (2012) PNPLA3 I148M (rs738409) genetic variant is associated with hepatocellular carcinoma in obese individuals. Dig Liver Dis 44(12):1037–1041

    Article  CAS  PubMed  Google Scholar 

  • Bush WS, Oetjens MT, Crawford DC (2016) Unravelling the human genome-phenome relationship using phenome-wide association studies. Nat Rev Genet 17(3):129–145

    Article  CAS  PubMed  Google Scholar 

  • Cai T et al (2011) Viral genotype-specific role of PNPLA3, PPARG, MTTP, and IL28B in hepatitis C virus-associated steatosis. J Hepatol 55(3):529–535

    Article  CAS  PubMed  Google Scholar 

  • Chalasani N et al (2018) The diagnosis and management of nonalcoholic fatty liver disease: practice guidance from the American Association for the Study of Liver Diseases. Hepatology 67(1):328–357

    PubMed  Google Scholar 

  • Chambers JC et al (2011) Genome-wide association study identifies loci influencing concentrations of liver enzymes in plasma. Nat Genet 43(11):1131–1138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chamoun Z et al (2013) PNPLA3/adiponutrin functions in lipid droplet formation. Biol Cell 105(5):219–233

    Article  CAS  PubMed  Google Scholar 

  • Di Sessa A et al (2018) The Membrane-bound O-Acyltransferase7 rs641738 Variant in Pediatric Nonalcoholic Fatty Liver Disease. J Pediatr Gastroenterol Nutr 67(1):69–74

    Article  PubMed  CAS  Google Scholar 

  • Diehl AM, Day C (2018) Nonalcoholic Steatohepatitis. N Engl J Med 378(8):781

    PubMed  Google Scholar 

  • Diogo D et al (2018) Phenome-wide association studies across large population cohorts support drug target validation. Nat Commun 9(1):4285

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dongiovanni P et al (2015a) Statin use and non-alcoholic steatohepatitis in at risk individuals. J Hepatol 63(3):705–712

    Article  CAS  PubMed  Google Scholar 

  • Dongiovanni P et al (2015b) Transmembrane 6 superfamily member 2 gene variant disentangles nonalcoholic steatohepatitis from cardiovascular disease. Hepatology 61(2):506–514

    Article  CAS  PubMed  Google Scholar 

  • Dubuquoy C et al (2011) Distinct regulation of adiponutrin/PNPLA3 gene expression by the transcription factors ChREBP and SREBP1c in mouse and human hepatocytes. J Hepatol 55(1):145–153

    Article  CAS  PubMed  Google Scholar 

  • Dubuquoy C, Burnol AF, Moldes M (2013) PNPLA3, a genetic marker of progressive liver disease, still hiding its metabolic function? Clin Res Hepatol Gastroenterol 37(1):30–35

    Article  CAS  PubMed  Google Scholar 

  • Eslam M, Valenti L, Romeo S (2018) Genetics and epigenetics of NAFLD and NASH: Clinical impact. J Hepatol 68(2):268–279

    Article  CAS  PubMed  Google Scholar 

  • Estes C et al (2018) Modeling NAFLD disease burden in China, France, Germany, Italy, Japan, Spain, United Kingdom, and United States for the period 2016-2030. J Hepatol 69(4):896–904

    Article  PubMed  Google Scholar 

  • Fan Y et al (2016) Hepatic transmembrane 6 superfamily member 2 regulates cholesterol metabolism in mice. Gastroenterology 150(5):1208–1218

    Article  CAS  PubMed  Google Scholar 

  • Fracanzani AL et al (2017) Liver and cardiovascular damage in patients with lean nonalcoholic fatty liver disease, and association with visceral obesity. Clin Gastroenterol Hepatol 15(10):1604–1611 e1

    Article  PubMed  Google Scholar 

  • Goffredo M et al (2016) Role of TM6SF2 rs58542926 in the pathogenesis of nonalcoholic pediatric fatty liver disease: a multiethnic study. Hepatology 63(1):117–125

    Article  CAS  PubMed  Google Scholar 

  • Grandone A et al (2016) TM6SF2 Glu167Lys polymorphism is associated with low levels of LDL-cholesterol and increased liver injury in obese children. Pediatr Obes 11(2):115–119

    Article  CAS  PubMed  Google Scholar 

  • Hassan MM et al (2013) Genetic variation in the PNPLA3 gene and hepatocellular carcinoma in USA: risk and prognosis prediction. Mol Carcinog 52(Suppl 1):E139–E147

    Article  CAS  PubMed  Google Scholar 

  • He S et al (2010) A sequence variation (I148M) in PNPLA3 associated with nonalcoholic fatty liver disease disrupts triglyceride hydrolysis. J Biol Chem 285(9):6706–6715

    Article  CAS  PubMed  Google Scholar 

  • Hernaez R et al (2013) Association between variants in or near PNPLA3, GCKR, and PPP1R3B with ultrasound-defined steatosis based on data from the third National Health and Nutrition Examination Survey. Clin Gastroenterol Hepatol 11(9):1183–1190 e2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang Y et al (2010) A feed-forward loop amplifies nutritional regulation of PNPLA3. Proc Natl Acad Sci U S A 107(17):7892–7897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang Y, Cohen JC, Hobbs HH (2011) Expression and characterization of a PNPLA3 protein isoform (I148M) associated with nonalcoholic fatty liver disease. J Biol Chem 286(43):37085–37093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hyysalo J et al (2014) Circulating triacylglycerol signatures in nonalcoholic fatty liver disease associated with the I148M variant in PNPLA3 and with obesity. Diabetes 63(1):312–322

    Article  CAS  PubMed  Google Scholar 

  • Joshi AD et al (2016) Four susceptibility loci for gallstone disease identified in a meta-analysis of genome-wide association studies. Gastroenterology 151(2):351–363 e28

    Article  CAS  PubMed  Google Scholar 

  • Kantartzis K et al (2009) Dissociation between fatty liver and insulin resistance in humans carrying a variant of the patatin-like phospholipase 3 gene. Diabetes 58(11):2616–2623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawaguchi T et al (2012) Genetic polymorphisms of the human PNPLA3 gene are strongly associated with severity of non-alcoholic fatty liver disease in Japanese. PLoS One 7(6):

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim D, Kim WR (2017) Nonobese fatty liver disease. Clin Gastroenterol Hepatol 15(4):474–485

    Article  CAS  PubMed  Google Scholar 

  • Kitamoto T et al (2013) Genome-wide scan revealed that polymorphisms in the PNPLA3, SAMM50, and PARVB genes are associated with development and progression of nonalcoholic fatty liver disease in Japan. Hum Genet 132(7):783–792

    Article  CAS  PubMed  Google Scholar 

  • Koo BK et al (2018) Additive effects of PNPLA3 and TM6SF2 on the histological severity of non-alcoholic fatty liver disease. J Gastroenterol Hepatol 33(6):1277–1285

    Article  CAS  PubMed  Google Scholar 

  • Kopp J et al (2016) Association of PNPLA3 rs738409 and TM6SF2 rs58542926 with health services utilization in a population-based study. BMC Health Serv Res 16:41

    Article  PubMed  PubMed Central  Google Scholar 

  • Kotronen A et al (2009) A common variant in PNPLA3, which encodes adiponutrin, is associated with liver fat content in humans. Diabetologia 52(6):1056–1060

    Article  CAS  PubMed  Google Scholar 

  • Kozlitina J et al (2014) Exome-wide association study identifies a TM6SF2 variant that confers susceptibility to nonalcoholic fatty liver disease. Nat Genet 46(4):352–356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krarup NT et al (2012) The PNPLA3 rs738409 G-allele associates with reduced fasting serum triglyceride and serum cholesterol in Danes with impaired glucose regulation. PLoS One 7(7):

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krawczyk M et al (2015) The Frequent Adiponutrin (PNPLA3) variant p.Ile148Met is associated with early liver injury: analysis of a german pediatric cohort. Gastroenterol Res Pract 2015:205079

    Google Scholar 

  • Krawczyk, M et al (2011) The common adiponutrin variant p.I148M does not confer gallstone risk but affects fasting glucose and triglyceride levels. J Physiol Pharmacol 62(3):369–375

    CAS  Google Scholar 

  • Krawczyk M et al (2011) Variant adiponutrin (PNPLA3) represents a common fibrosis risk gene: non-invasive elastography-based study in chronic liver disease. J Hepatol 55(2):299–306

    Article  CAS  PubMed  Google Scholar 

  • Krawczyk M, Portincasa P, Lammert F (2013) PNPLA3-associated steatohepatitis: toward a gene-based classification of fatty liver disease. Semin Liver Dis 33(4):369–379

    Article  CAS  PubMed  Google Scholar 

  • Krawczyk M et al (2016) PNPLA3 p.I148M variant is associated with greater reduction of liver fat content after bariatric surgery. Surg Obes Relat Dis 12(10):1838–1846

    Article  PubMed  Google Scholar 

  • Krawczyk M et al (2017) Combined effects of the PNPLA3 rs738409, TM6SF2 rs58542926, and MBOAT7 rs641738 variants on NAFLD severity: a multicenter biopsy-based study. J Lipid Res 58(1):247–255

    Article  CAS  PubMed  Google Scholar 

  • Krawczyk M et al (2018) Could inherited predisposition drive non-obese fatty liver disease? Results from German tertiary referral centers. J Hum Genet 63(5):621–626

    Article  CAS  PubMed  Google Scholar 

  • Kumari M et al (2012) Adiponutrin functions as a nutritionally regulated lysophosphatidic acid acyltransferase. Cell Metab 15(5):691–702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larrieta-Carrasco E et al (2013) Association of the I148M/PNPLA3 variant with elevated alanine transaminase levels in normal-weight and overweight/obese Mexican children. Gene 520(2):185–188

    Article  CAS  PubMed  Google Scholar 

  • Li JZ et al (2012) Chronic overexpression of PNPLA3I148M in mouse liver causes hepatic steatosis. J Clin Invest 122(11):4130–4144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin YC et al (2011) A common variant in the PNPLA3 gene is a risk factor for non-alcoholic fatty liver disease in obese Taiwanese children. J Pediatr 158(5):740–744

    Article  CAS  PubMed  Google Scholar 

  • Liu YL et al (2014a) TM6SF2 rs58542926 influences hepatic fibrosis progression in patients with non-alcoholic fatty liver disease. Nat Commun 5:4309

    Article  CAS  PubMed  Google Scholar 

  • Liu YL et al (2014b) Carriage of the PNPLA3 rs738409 C >G polymorphism confers an increased risk of non-alcoholic fatty liver disease associated hepatocellular carcinoma. J Hepatol 61(1):75–81

    Article  CAS  PubMed  Google Scholar 

  • Loomba R et al (2015) Heritability of hepatic fibrosis and steatosis based on a prospective twin study. Gastroenterology 149(7):1784–1793

    Article  PubMed  Google Scholar 

  • Ma Y et al (2019) 17-Beta hydroxysteroid dehydrogenase 13 is a hepatic retinol dehydrogenase associated with histological features of nonalcoholic fatty liver disease. Hepatology 69(4):1504–1519

    Article  CAS  PubMed  Google Scholar 

  • Mahdessian H et al (2014) TM6SF2 is a regulator of liver fat metabolism influencing triglyceride secretion and hepatic lipid droplet content. Proc Natl Acad Sci U S A 111(24):8913–8918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mancina RM et al (2016) The MBOAT7-TMC4 variant rs641738 increases risk of nonalcoholic fatty liver disease in individuals of European Descent. Gastroenterology 150(5):1219–1230 e6

    Article  CAS  PubMed  Google Scholar 

  • Marzuillo P et al (2013) Weight loss allows the dissection of the interaction between abdominal fat and PNPLA3 (adiponutrin) in the liver damage of obese children. J Hepatol 59(5):1143–1144

    Article  PubMed  Google Scholar 

  • Mirnezami R, Nicholson J, Darzi A (2012) Preparing for precision medicine. N Engl J Med 366(6):489–491

    Article  PubMed  Google Scholar 

  • Mitsche MA, Hobbs HH, Cohen JC (2018) Patatin-like phospholipase domain-containing protein 3 promotes transfer of essential fatty acids from triglycerides to phospholipids in hepatic lipid droplets. J Biol Chem 293(24):9232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muller T et al (2011) Distinct, alcohol-modulated effects of PNPLA3 genotype on progression of chronic hepatitis C. J Hepatol 55(3):732–733

    Article  PubMed  CAS  Google Scholar 

  • Palasciano G et al (2007) Non-alcoholic fatty liver disease in the metabolic syndrome. Curr Pharm Des 13(21):2193–2198

    Article  CAS  PubMed  Google Scholar 

  • Palmer CN et al (2012) Paradoxical lower serum triglyceride levels and higher type 2 diabetes mellitus susceptibility in obese individuals with the PNPLA3 148M variant. PLoS One 7(6):

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perttila J et al (2012) PNPLA3 is regulated by glucose in human hepatocytes, and its I148M mutant slows down triglyceride hydrolysis. Am J Physiol Endocrinol Metab 302(9):E1063–E1069

    Article  CAS  PubMed  Google Scholar 

  • Petaja EM, Yki-Jarvinen H (2016) Definitions of normal liver fat and the association of insulin sensitivity with acquired and genetic NAFLD-A systematic review. Int J Mol Sci 17(5):633

    Article  PubMed Central  CAS  Google Scholar 

  • Petta S et al (2018) Prevalence and severity of nonalcoholic fatty liver disease by transient elastography: genetic and metabolic risk factors in a general population. Liver Int 38(11):2060–2068

    Article  CAS  PubMed  Google Scholar 

  • Pirazzi C et al (2014) PNPLA3 has retinyl-palmitate lipase activity in human hepatic stellate cells. Hum Mol Genet 23(15):4077–4085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pirola CJ, Sookoian S (2015) The dual and opposite role of the TM6SF2-rs58542926 variant in protecting against cardiovascular disease and conferring risk for nonalcoholic fatty liver: a meta-analysis. Hepatology 62(6):1742–1756

    Article  CAS  PubMed  Google Scholar 

  • Pirola CJ et al (2019) Splice variant rs72613567 prevents worst histologic outcomes in patients with nonalcoholic fatty liver disease. J Lipid Res 60(1):176–185

    Article  CAS  PubMed  Google Scholar 

  • Rees MG et al (2012) Cellular characterisation of the GCKR P446L variant associated with type 2 diabetes risk. Diabetologia 55(1):114–122

    Article  CAS  PubMed  Google Scholar 

  • Rembeck K et al (2012) PNPLA 3 I148M genetic variant associates with insulin resistance and baseline viral load in HCV genotype 2 but not in genotype 3 infection. BMC Med Genet 13:82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romeo S et al (2008) Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat Genet 40(12):1461–1465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rotman Y et al (2010) The association of genetic variability in patatin-like phospholipase domain-containing protein 3 (PNPLA3) with histological severity of nonalcoholic fatty liver disease. Hepatology 52(3):894–903

    Article  CAS  PubMed  Google Scholar 

  • Santoro N et al (2010) A common variant in the patatin-like phospholipase 3 gene (PNPLA3) is associated with fatty liver disease in obese children and adolescents. Hepatology 52(4):1281–1290

    Article  CAS  PubMed  Google Scholar 

  • Scorletti E et al (2015) Treating liver fat and serum triglyceride levels in NAFLD, effects of PNPLA3 and TM6SF2 genotypes: results from the WELCOME trial. J Hepatol 63(6):1476–1483

    Article  CAS  PubMed  Google Scholar 

  • Sevastianova K et al (2011) Genetic variation in PNPLA3 (adiponutrin) confers sensitivity to weight loss-induced decrease in liver fat in humans. Am J Clin Nutr 94(1):104–111

    Article  CAS  PubMed  Google Scholar 

  • Shen J et al (2015) PNPLA3 gene polymorphism and response to lifestyle modification in patients with nonalcoholic fatty liver disease. J Gastroenterol Hepatol 30(1):139–146

    Article  CAS  PubMed  Google Scholar 

  • Smagris E et al (2015) Pnpla3I148M knockin mice accumulate PNPLA3 on lipid droplets and develop hepatic steatosis. Hepatology 61(1):108–118

    Article  CAS  PubMed  Google Scholar 

  • Smagris E et al (2016) Inactivation of Tm6sf2, a gene defective in fatty liver disease, impairs lipidation but not secretion of very low density lipoproteins. J Biol Chem 291(20):10659–10676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sookoian S, Pirola CJ (2011) Meta-analysis of the influence of I148M variant of patatin-like phospholipase domain containing 3 gene (PNPLA3) on the susceptibility and histological severity of nonalcoholic fatty liver disease. Hepatology 53(6):1883–1894

    Article  CAS  PubMed  Google Scholar 

  • Sookoian S et al (2009) A nonsynonymous gene variant in the adiponutrin gene is associated with nonalcoholic fatty liver disease severity. J Lipid Res 50(10):2111–2116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sookoian S et al (2015) Genetic variation in transmembrane 6 superfamily member 2 and the risk of nonalcoholic fatty liver disease and histological disease severity. Hepatology 61(2):515–525

    Article  CAS  PubMed  Google Scholar 

  • Speliotes EK et al (2010) PNPLA3 variants specifically confer increased risk for histologic nonalcoholic fatty liver disease but not metabolic disease. Hepatology 52(3):904–912

    Article  CAS  PubMed  Google Scholar 

  • Speliotes EK et al (2011) Genome-wide association analysis identifies variants associated with nonalcoholic fatty liver disease that have distinct effects on metabolic traits. PLoS Genet 7(3):

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stender S et al (2017) Adiposity amplifies the genetic risk of fatty liver disease conferred by multiple loci. Nat Genet 49(6):842–847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stender S, Grarup N, Hansen T (2019) Genetic aspects of Non-alcoholic Fatty Liver Disease (NAFLD). In: Krag HT (Hrsg) The human gut-liver-axis in health and disease. Springer, Cham, S 195–206

    Google Scholar 

  • Stickel F et al (2011) Genetic variation in the PNPLA3 gene is associated with alcoholic liver injury in caucasians. Hepatology 53(1):86–95

    Article  CAS  PubMed  Google Scholar 

  • Stojkovic IA et al (2014) The PNPLA3 Ile148Met interacts with overweight and dietary intakes on fasting triglyceride levels. Genes Nutr 9(2):388

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tian C et al (2010) Variant in PNPLA3 is associated with alcoholic liver disease. Nat Genet 42(1):21–23

    Article  CAS  PubMed  Google Scholar 

  • Umano GR et al (2018) The rs626283 Variant in the MBOAT7 Gene is Associated with Insulin Resistance and Fatty Liver in Caucasian Obese Youth. Am J Gastroenterol 113(3):376–383

    Article  CAS  PubMed  Google Scholar 

  • Valenti L, Dongiovanni P (2017) Mutant PNPLA3 I148M protein as pharmacological target for liver disease. Hepatology 66(4):1026–1028

    Article  CAS  PubMed  Google Scholar 

  • Valenti L, Fargion S (2011) Patatin-like phospholipase domain containing-3 Ile148Met and fibrosis progression after liver transplantation. Hepatology 54(4):1484

    Article  PubMed  Google Scholar 

  • Valenti L et al (2010a) I148M patatin-like phospholipase domain-containing 3 gene variant and severity of pediatric nonalcoholic fatty liver disease. Hepatology 52(4):1274–1280

    Article  CAS  PubMed  Google Scholar 

  • Valenti L et al (2010b) Homozygosity for the patatin-like phospholipase-3/adiponutrin I148M polymorphism influences liver fibrosis in patients with nonalcoholic fatty liver disease. Hepatology 51(4):1209–1217

    Article  CAS  PubMed  Google Scholar 

  • Valenti L et al (2013) PNPLA3 I148M variant and hepatocellular carcinoma: a common genetic variant for a rare disease. Dig Liver Dis 45(8):619–624

    Article  CAS  PubMed  Google Scholar 

  • Verhaegh P et al (2018) Noninvasive tests do not accurately differentiate nonalcoholic steatohepatitis from simple steatosis: a systematic review and meta-analysis. Clin Gastroenterol Hepatol 16(6):837–861

    Article  PubMed  Google Scholar 

  • Vigano M et al (2013) Patatin-like phospholipase domain-containing 3 I148M affects liver steatosis in patients with chronic hepatitis B. Hepatology 58(4):1245–1252

    Article  CAS  PubMed  Google Scholar 

  • Wang B, Tontonoz P (2019) Phospholipid remodeling in physiology and disease. Annu Rev Physiol 81:165–188

    Article  PubMed  CAS  Google Scholar 

  • Wei JL et al (2015) Prevalence and severity of nonalcoholic fatty liver disease in non-obese patients: a population study using proton-magnetic resonance spectroscopy. Am J Gastroenterol 110(9):1306–1314; quiz 1315

    Article  CAS  PubMed  Google Scholar 

  • Xin YN et al (2013) Molecular dynamics simulation of PNPLA3 I148M polymorphism reveals reduced substrate access to the catalytic cavity. Proteins 81(3):406–414

    Article  CAS  PubMed  Google Scholar 

  • Xu R et al (2015) Association between patatin-like phospholipase domain containing 3 gene (PNPLA3) polymorphisms and nonalcoholic fatty liver disease: a HuGE review and meta-analysis. Sci Rep 5:9284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yki-Jarvinen H (2014) Non-alcoholic fatty liver disease as a cause and a consequence of metabolic syndrome. Lancet Diabetes Endocrinol 2(11):901–910

    Article  CAS  PubMed  Google Scholar 

  • Younossi Z et al (2018) Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention. Nat Rev Gastroenterol Hepatol 15(1):11–20

    Article  PubMed  Google Scholar 

  • Yuan X et al (2008) Population-based genome-wide association studies reveal six loci influencing plasma levels of liver enzymes. Am J Hum Genet 83(4):520–528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zain SM, Mohamed Z, Mohamed R (2015) Common variant in the glucokinase regulatory gene rs780094 and risk of nonalcoholic fatty liver disease: a meta-analysis. J Gastroenterol Hepatol 30(1):21–27

    Article  CAS  PubMed  Google Scholar 

  • Zechner R et al (2012) FAT SIGNALS–lipases and lipolysis in lipid metabolism and signaling. Cell Metab 15(3):279–291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Y et al (2015) Circulating triacylglycerol signatures and insulin sensitivity in NAFLD associated with the E167K variant in TM6SF2. J Hepatol 62(3):657–663

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Lammert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Weber, S.N., Lammert, F. (2022). Pathophysiologie: Genetik. In: Geier, A., Canbay, A., Lammert, F. (eds) Nicht-alkoholische Fettlebererkrankung. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-62484-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-62484-5_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-62483-8

  • Online ISBN: 978-3-662-62484-5

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics