Skip to main content

Pathophysiologie: Lipidstoffwechsel

  • Chapter
  • First Online:
Nicht-alkoholische Fettlebererkrankung

Zusammenfassung

Die Leber gilt als das zentrale Stoffwechselorgan des menschlichen Körpers. Neben Proteinbiosynthese, Wärmeregulierung, Glukoseverwertung und Biotransformation sind die Hepatozyten vor allem der Hauptumschlagplatz des Lipidstoffwechsels. Die Leber spielt somit eine entscheidende Rolle in der Fettaufnahme- und Oxidierung, der Fettspeicherung, der Cholesterinsynthese und der Lipogenese. In diesem Kapitel soll auf die Physiologie der hepatischen Fettverdauung und die lipidassoziierte Pathophysiologie der Steatohepatitis eingegangen werden. Dies beinhaltet die Regulation zentraler Stoffwechselprozesse durch nukleäre Rezeptoren, die zentrale Rolle der Insulinresistenz, die Lipotoxizität sowie neue mechanistische Aspekte (z. B. Autophagie).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • Adolph TE, Grander C, Grabherr F, Tilg H (2017) Adipokines and non-alcoholic fatty liver disease: multiple interactions. Int J Mol Sci 18(8):1649

    Article  Google Scholar 

  • Bechmann LP, Gieseler RK, Sowa JP, Kahraman A, Erhard J, Wedemeyer I, Emons B, Jochum C, Feldkamp T, Gerken G, Canbay A (2010) Apoptosis is associated with CD36/fatty acid translocase upregulation in non-alcoholic steatohepatitis. Liver Int 30(6):850–859

    Article  CAS  Google Scholar 

  • Bechmann LP, Hannivoort RA, Gerken G, Hotamisligil GS, Trauner M, Canbay A (2012) The interaction of hepatic lipid and glucose metabolism in liver diseases. J Hepatol 56(4):952–964

    Article  CAS  Google Scholar 

  • Bechmann LP, Kocabayoglu P, Sowa JP, Sydor S, Best J, Schlattjan M, Beilfuss A, Schmitt J, Hannivoort RA, Kilicarslan A, Rust C, Berr F, Tschopp O, Gerken G, Friedman SL, Geier A, Canbay A (2013) Free fatty acids repress small heterodimer partner (SHP) activation and adiponectin counteracts bile acid-induced liver injury in superobese patients with nonalcoholic steatohepatitis. Hepatology 57(4):1394–1406

    Article  CAS  Google Scholar 

  • Biesalski H-K, Bischoff SC, Pirlich M, Weimann A (2017) Ernährungsmedizin: nach dem Curriculum Ernährungsmedizin der Bundesärztekammer

    Google Scholar 

  • Chavez-Talavera O, Tailleux A, Lefebvre P, Staels B (2017) Bile Acid Control of Metabolism and Inflammation in Obesity, Type 2 Diabetes, Dyslipidemia, and Nonalcoholic Fatty Liver Disease. Gastroenterology 152(7):1679–1694 e1673

    Article  CAS  Google Scholar 

  • Chu H, Duan Y, Yang L, Schnabl B (2019) Small metabolites, possible big changes: a microbiota-centered view of non-alcoholic fatty liver disease. Gut 68(2):359–370

    Article  CAS  Google Scholar 

  • Gluchowski NL, Becuwe M, Walther TC, Farese RV Jr (2017) Lipid droplets and liver disease: from basic biology to clinical implications. Nat Rev Gastroenterol Hepatol 14(6):343–355

    Article  CAS  Google Scholar 

  • Ipsen DH, Lykkesfeldt J, Tveden-Nyborg P (2018) Molecular mechanisms of hepatic lipid accumulation in non-alcoholic fatty liver disease. Cell Mol Life Sci 75(18):3313–3327

    Article  CAS  Google Scholar 

  • Irshad Z, Chmel N, Adya R, Zammit VA (2019) Hepatic VLDL secretion: DGAT1 determines particle size but not particle number, which can be supported entirely by DGAT2. J Lipid Res 60(1):111–120

    Article  CAS  Google Scholar 

  • Jahn D, Rau M, Hermanns HM, Geier A (2015) Mechanisms of enterohepatic fibroblast growth factor 15/19 signaling in health and disease. Cytokine Growth Factor Rev 26(6):625–635

    Article  CAS  Google Scholar 

  • Kazantzis M, Stahl A (2012) Fatty acid transport proteins, implications in physiology and disease. Biochim Biophys Acta 1821(5):852–857

    Article  CAS  Google Scholar 

  • Li T, Chiang JY (2015) Bile acids as metabolic regulators. Curr Opin Gastroenterol 31(2):159–165

    Article  Google Scholar 

  • Lian J, Wei E, Wang SP, Quiroga AD, Li L, Di Pardo A, van der Veen J, Sipione S, Mitchell GA, Lehner R (2012) Liver specific inactivation of carboxylesterase 3/triacylglycerol hydrolase decreases blood lipids without causing severe steatosis in mice. Hepatology 56(6):2154–2162

    Article  CAS  Google Scholar 

  • Marra F, Lotersztajn S (2013) Pathophysiology of NASH: perspectives for a targeted treatment. Curr Pharm Des 19(29):5250–5269

    Article  CAS  Google Scholar 

  • Parry SA, Hodson L (2017) Influence of dietary macronutrients on liver fat accumulation and metabolism. J Investig Med 65(8):1102–1115

    Article  Google Scholar 

  • Postic C, Girard J (2008) Contribution of de novo fatty acid synthesis to hepatic steatosis and insulin resistance: lessons from genetically engineered mice. J Clin Invest 118(3):829–838

    Article  CAS  Google Scholar 

  • Rial SA, Karelis AD, Bergeron KF, Mounier C (2016) Gut microbiota and metabolic health: the potential beneficial effects of a medium chain triglyceride diet in obese individuals. Nutrients 8:281

    Article  Google Scholar 

  • Schroeder F, McIntosh AL, Martin GG, Huang H, Landrock D, Chung S, Landrock KK, Dangott LJ, Li S, Kaczocha M, Murphy EJ, Atshaves BP, Kier AB (2016) Fatty Acid Binding Protein-1 (FABP1) and the Human FABP1 T94A Variant: Roles in the Endocannabinoid System and Dyslipidemias. Lipids 51(6):655–676

    Article  CAS  Google Scholar 

  • Shapiro H, Kolodziejczyk AA, Halstuch D, Elinav E (2018) Bile acids in glucose metabolism in health and disease. J Exp Med 215(2):383–396

    Article  CAS  Google Scholar 

  • Ter Horst KW, Serlie MJ (2017) Fructose Consumption, Lipogenesis, and Non-Alcoholic Fatty Liver Disease. Nutrients 9(9):981

    Article  Google Scholar 

  • Weiskirchen R, Tacke F (2019) Relevance of autophagy in parenchymal and non-parenchymal liver cells for health and disease. Cells 8(1):16

    Article  CAS  Google Scholar 

  • Wree A, Schlattjan M, Bechmann LP, Claudel T, Sowa JP, Stojakovic T, Scharnagl H, Kofeler H, Baba HA, Gerken G, Feldstein AE, Trauner M, Canbay A (2014) Adipocyte cell size, free fatty acids and apolipoproteins are associated with non-alcoholic liver injury progression in severely obese patients. Metabolism 63(12):1542–1552

    Article  CAS  Google Scholar 

  • You M, Arteel GE (2019) Effect of ethanol on lipid metabolism. J Hepatol 70(2):237–248

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars P. Bechmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bechmann, L.P., Geier, A., Canbay, A. (2022). Pathophysiologie: Lipidstoffwechsel. In: Geier, A., Canbay, A., Lammert, F. (eds) Nicht-alkoholische Fettlebererkrankung. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-62484-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-62484-5_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-62483-8

  • Online ISBN: 978-3-662-62484-5

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics