Skip to main content

Enabling Decision Support Through Ranking and Summarization of Association Rules for TOTAL Customers

  • Chapter
  • First Online:
Transactions on Large-Scale Data- and Knowledge-Centered Systems XLIV

Part of the book series: Lecture Notes in Computer Science ((TLDKS,volume 12380))

Abstract

Our focus in this experimental analysis paper is to investigate existing measures that are available to rank association rules and understand how they can be augmented further to enable real-world decision support as well as providing customers with personalized recommendations. For example, by analyzing receipts of TOTAL customers, one can find that, customers who buy windshield wash, also buy engine oil and energy drinks or middle-aged customers from the South of France subscribe to a car wash program. Such actionable insights can immediately guide business decision making, e.g., for product promotion, product recommendation or targeted advertising. We present an analysis of 30 million unique sales receipts, spanning 35 million records, by almost 1 million customers, generated at 3,463 gas stations, over three years. Our finding is that the 35 commonly used measures to rank association rules, such as Confidence and Piatetsky-Shapiro, can be summarized into 5 synthesized clusters based on similarity in their rankings. We then use one representative measure in each cluster to run a user study with a data scientist and a product manager at TOTAL. Our analysis draws actionable insights to enable decision support for TOTAL decision makers: rules that favor Confidence are best to determine which products to recommend and rules that favor Recall are well-suited to find customer segments to target. Finally, we present how association rules using the representative measures can be used to provide customers with personalized product recommendations.

I. Benouaret and S. Amer-Yahia—Our work is funuded by a grant from TOTAL.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of items in large databases. In: Proceedings of SIGMOD, pp. 207–216 (1993)

    Google Scholar 

  2. Belohlavek, R., Grissa, D., Guillaume, S., Nguifo, E.M., Outrata, J.: Boolean factors as a means of clustering of interestingness measures of association rules. Ann. Math. Artif. Intell. 70(1–2), 151–184 (2014)

    Article  MathSciNet  Google Scholar 

  3. Daniel, W.: Applied Nonparametric Statistics. Houghton Mifflin, Boston (1978)

    MATH  Google Scholar 

  4. Geng, L., Hamilton, H.J.: Interestingness measures for data mining: a survey. ACM Comput. Surv. 38(3), 9-es (2006)

    Article  Google Scholar 

  5. Grissa, D.: Etude comportementale des mesures d’intérêt d’extraction de connaissances. Ph.D. thesis (2013)

    Google Scholar 

  6. Gunawardana, A., Shani, G.: Evaluating recommender systems. In: Ricci, F., Rokach, L., Shapira, B. (eds.) Recommender Systems Handbook, pp. 265–308. Springer, Boston, MA (2015). https://doi.org/10.1007/978-1-4899-7637-6_8

    Chapter  Google Scholar 

  7. Herlocker, J.L., Konstan, J.A., Terveen, L.G., Riedl, J.T.: Evaluating collaborative filtering recommender systems. ACM Trans. Inf. Syst. (TOIS) 22(1), 5–53 (2004)

    Article  Google Scholar 

  8. Hu, Y., Koren, Y., Volinsky, C.: Collaborative filtering for implicit feedback datasets. In: 2008 Eighth IEEE International Conference on Data Mining, pp. 263–272. IEEE (2008)

    Google Scholar 

  9. Järvelin, K., Kekäläinen, J.: Cumulated gain-based evaluation of IR techniques. ACM Trans. Inf. Syst. 20(4), 422–446 (2002)

    Article  Google Scholar 

  10. Kendall, M.G.: A New Measure of Rank Correlation. Biometrika 30(1/2), 81–93 (1938)

    Article  Google Scholar 

  11. Kim, C., Kim, J.: A recommendation algorithm using multi-level association rules. In: Proceedings IEEE/WIC International Conference on Web Intelligence (WI 2003), pp. 524–527. IEEE (2003)

    Google Scholar 

  12. Kirchgessner, M., Leroy, V., Amer-Yahia, S., Mishra, S.: Testing interestingness measures in practice: a large-scale analysis of buying patterns. In: 2016 IEEE International Conference on Data Science and Advanced Analytics, DSAA 2016, Montreal, QC, Canada, 17–19 October 2016, pp. 547–556. IEEE (2016). https://doi.org/10.1109/DSAA.2016.53

  13. Kirchgessner, M., Leroy, V., Termier, A., Amer-Yahia, S., Rousset, M.C.: jLCM. https://github.com/slide-lig/jlcm. Accessed 27 May 2016

  14. Le, T.D., Lo, D.: Beyond support and confidence: exploring interestingness measures for rule-based specification mining. In: Proceedings of SANER, pp. 331–340 (2015)

    Google Scholar 

  15. Lenca, P., Vaillant, B., Meyer, P., Lallich, S.: Association rule interestingness measures: experimental and theoretical studies. In: Guillet, F.J., Hamilton, H.J. (eds.) Quality Measures in Data Mining. Studies in Computational Intelligence, vol. 43, pp. 51–76. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-44918-8_3

    Chapter  Google Scholar 

  16. Leroy, V., Kirchgessner, M., Termier, A., Amer-Yahia, S.: TopPI: an efficient algorithm for item-centric mining. Inf. Syst. 64, 104–118 (2017). https://doi.org/10.1016/j.is.2016.09.001

    Article  Google Scholar 

  17. Liu, G., et al.: Towards exploratory hypothesis testing and analysis. In: Proceedings of ICDE, pp. 745–756 (2011)

    Google Scholar 

  18. Messaoud, R.B., Rabaséda, S.L., Boussaid, O., Missaoui, R.: Enhanced mining of association rules from data cubes. In: Proceedings of ACM 9th International Workshop on Data Warehousing and OLAP, DOLAP 2006, Arlington, Virginia, USA, 10 November 2006, pp. 11–18 (2006). https://doi.org/10.1145/1183512.1183517

  19. Minato, S., Uno, T., Tsuda, K., Terada, A., Sese, J.: A fast method of statistical assessment for combinatorial hypotheses based on frequent itemset enumeration. In: Calders, T., Esposito, F., Hüllermeier, E., Meo, R. (eds.) ECML PKDD 2014. LNCS (LNAI), vol. 8725, pp. 422–436. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44851-9_27

    Chapter  Google Scholar 

  20. Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Discovering frequent closed itemsets for association rules. In: Beeri, C., Buneman, P. (eds.) ICDT 1999. LNCS, vol. 1540, pp. 398–416. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-49257-7_25

    Chapter  Google Scholar 

  21. Pei, J., Han, J., Mao, R.: CLOSET: an efficient algorithm for mining frequent closed itemsets. In: Proceedings of SIGMOD, pp. 21–30 (2000)

    Google Scholar 

  22. Piatetsky-Shapiro, G.: Knowledge Discovery in Databases. AAI/MIT, Menlo Park (1991)

    MATH  Google Scholar 

  23. Plantevit, M., Laurent, A., Teisseire, M.: OLAP-sequential mining: summarizing trends from historical multidimensional data using closed multidimensional sequential patterns. New Trends Data Warehouse. Data Anal. 3, 275 (2008)

    Google Scholar 

  24. Pradel, B., et al.: A case study in a recommender system based on purchase data. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 377–385. ACM (2011)

    Google Scholar 

  25. Rendle, S., Freudenthaler, C., Gantner, Z., Schmidt-Thieme, L.: BPR: Bayesian personalized ranking from implicit feedback. In: Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, pp. 452–461. AUAI Press (2009)

    Google Scholar 

  26. Sarwar, B., Karypis, G., Konstan, J., Riedl, J., et al.: Analysis of recommendation algorithms for e-commerce. In: EC, pp. 158–167 (2000)

    Google Scholar 

  27. Sokal, R.R., Michener, C.D.: A statistical method for evaluating systematic relationships. Univ. Kans. Sci. Bull. 38, 1409–1438 (1958)

    Google Scholar 

  28. Tan, P.N., Steinbach, M., Kumar, V.: Introduction to Data Mining, 1st edn. W. W. Norton & Company, New York City (2007)

    Google Scholar 

  29. Tew, C., Giraud-Carrier, C., Tanner, K., Burton, S.: Behavior-based clustering and analysis of interestingness measures for association rule mining. Data Min. Knowl. Disc. 28(4), 1004–1045 (2013). https://doi.org/10.1007/s10618-013-0326-x

    Article  MathSciNet  MATH  Google Scholar 

  30. Uno, T., Kiyomi, M., Arimura, H.: LCM ver. 2: efficient mining algorithms for frequent/closed/maximal itemsets. In: Proceedings of ICDM Workshop FIMI (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Idir Benouaret .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Benouaret, I., Amer-Yahia, S., Roy, S.B., Kamdem-Kengne, C., Chagraoui, J. (2020). Enabling Decision Support Through Ranking and Summarization of Association Rules for TOTAL Customers. In: Hameurlain, A., Tjoa, A.M., Lamarre, P., Zeitouni, K. (eds) Transactions on Large-Scale Data- and Knowledge-Centered Systems XLIV. Lecture Notes in Computer Science(), vol 12380. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-62271-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-62271-1_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-62270-4

  • Online ISBN: 978-3-662-62271-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics