Appian: Low-code platform and bpm software for digital transformation. https://www.appian.com/
BIMP - the business process simulator. http://bimp.cs.ut.ee/
Bizagi - digital transformation and business process management bpm. https://www.bizagi.com/en
Camunda bpm: Workflow and decision automation platform. https://camunda.com/
van der Aalst, W.M.P.: Re-engineering knock-out processes. Decis. Support Syst. 30(4), 451–468 (2001)
CrossRef
Google Scholar
van der Aalst, W.M.P.: Process Mining - Discovery, Conformance and Enhancementof Business Processes. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19345-3
MATH
CrossRef
Google Scholar
van der Aalst, W.M.P.: Spreadsheets for business process management: using process mining to deal with “events” rather than “numbers”? Bus. Proc. Manag. J. 24(1), 105–127 (2018)
CrossRef
Google Scholar
Agrawal, K., Benoit, A., Dufossé, F., Robert, Y.: Mapping filtering streaming applications. Algorithmica 62(1–2), 258–308 (2012)
MathSciNet
MATH
CrossRef
Google Scholar
Augusto, A., Conforti, R., Dumas, M., Rosa, M.L.: Split miner: discovering accurate and simple business process models from event logs. In: 2017 IEEE International Conference on Data Mining, ICDM 2017, New Orleans, LA, USA, 18–21 November 2017, pp. 1–10 (2017)
Google Scholar
Augusto, A., Conforti, R., Dumas, M., Rosa, M.L., Bruno, G.: Automated discovery of structured process models from event logs: the discover-and-structure approach. Data Knowl. Eng. 117, 373–392 (2018)
CrossRef
Google Scholar
Jagadeesh Chandra Bose, R.P., van der Aalst, W.: Trace alignment in process mining: opportunities for process diagnostics. In: Hull, R., Mendling, J., Tai, S. (eds.) BPM 2010. LNCS, vol. 6336, pp. 227–242. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15618-2_17
CrossRef
Google Scholar
Brownlee, J.: Clever algorithms: nature-inspired programming recipes (2011)
Google Scholar
Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: Discovering and navigating a collection of process models using multiple quality dimensions. In: Business Process Management Workshops - BPM 2013 International Workshops, Beijing, China, 26 August 2013, Revised Papers, pp. 3–14 (2013)
Google Scholar
Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: Mining configurable process models from collections of event logs. In: Business Process Management - 11th International Conference, BPM 2013, Beijing, China, 26–30 August 2013, Proceedings, pp. 33–48 (2013)
Google Scholar
Buzacott, J.A.: Commonalities in reengineered business processes: models and issues. Manag. Sci. 42(5), 768–782 (1996)
MATH
CrossRef
Google Scholar
Deshpande, A., Hellerstein, L.: Parallel pipelined filter ordering with precedence constraints. ACM Trans. Algorithms 8(4), 41:1–41:38 (2012)
Google Scholar
Dumas, M., Rosa, M.L., Mendling, J., Reijers, H.A.: Fundamentals of Business Process Management, 2nd edn. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-642-33143-5
CrossRef
Google Scholar
Falk, T., Griesberger, P., Leist, S.: Patterns as an artifact for business process improvement - insights from a case study. In: vom Brocke, J., Hekkala, R., Ram, S., Rossi, M. (eds.) DESRIST 2013. LNCS, vol. 7939, pp. 88–104. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38827-9_7
CrossRef
Google Scholar
Gounaris, A.: Towards automated performance optimization of BPMN business processes. In: New Trends in Databases and Information Systems - ADBIS 2016 Short Papers and Workshops, pp. 19–28 (2016)
Google Scholar
Gounaris, A., Kougka, G., Tous, R., Montes, C.T., Torres, J.: Dynamic configuration of partitioning in spark applications. IEEE Trans. Parallel Distrib. Syst. 28(7), 1891–1904 (2017)
CrossRef
Google Scholar
Ibaraki, T., Kameda, T.: On the optimal nesting order for computing N-relational joins. ACM Trans. Database Syst. 9(3), 482–502 (1984)
MathSciNet
CrossRef
Google Scholar
Indulska, M., zur Muehlen, M., Recker, J.: Measuring method complexity: the case of the business process modeling notation. Technical report, BPM Center Report BPM-09-03 (2009). BPMcenter.org
Jennings, N.R., Norman, T.J., Faratin, P., O’Brien, P., Odgers, B.: Autonomous agents for business process management. Appl. Artif. Intell. 14(2), 145–189 (2000)
CrossRef
Google Scholar
Kiepuszewski, B., ter Hofstede, A.H.M., Bussler, C.J.: On structured workflow modelling. In: Wangler, B., Bergman, L. (eds.) CAiSE 2000. LNCS, vol. 1789, pp. 431–445. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45140-4_29
CrossRef
Google Scholar
Köpke, J., Franceschetti, M., Eder, J.: Optimizing data-flow implementations for inter-organizational processes. Distrib. Parallel Databases 37, 651–695 (2018)
CrossRef
Google Scholar
Kougka, G., Gounaris, A.: Cost optimization of data flows based on task re-ordering. In: Hameurlain, A., Küng, J., Wagner, R., Akbarinia, R., Pacitti, E. (eds.) Transactions on Large-Scale Data- and Knowledge-Centered Systems XXXIII. LNCS, vol. 10430, pp. 113–145. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-55696-2_4
CrossRef
Google Scholar
Kougka, G., Gounaris, A.: Optimal task ordering in chain data flows: exploring the practicality of non-scalable solutions. In: Bellatreche, L., Chakravarthy, S. (eds.) DaWaK 2017. LNCS, vol. 10440, pp. 19–32. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-64283-3_2
CrossRef
Google Scholar
Kougka, G., Gounaris, A.: Optimization of data flow execution in a parallel environment. Distrib. Parallel Databases (2018). https://doi.org/10.1007/s10619-018-7243-3
Kougka, G., Gounaris, A., Simitsis, A.: The many faces of data-centric workflow optimization: a survey. Int. J. Data Sci. Anal. 6(2), 81–107 (2018)
CrossRef
Google Scholar
Kougka, G., Gounaris, A., Tsichlas, K.: Practical algorithms for execution engine selection in data flows. Future Generation Comp. Syst. 45, 133–148 (2015)
CrossRef
Google Scholar
Krishnamurthy, R., Boral, H., Zaniolo, C.: Optimization of nonrecursive queries. In: VLDB, pp. 128–137 (1986)
Google Scholar
La Rosa, M., Dumas, M., ter Hofstede, A.H.M., Mendling, J.: Configurable multi-perspective business process models. Inf. Syst. 36(2), 313–340 (2011)
CrossRef
Google Scholar
Maggi, F.M., Mooij, A.J., van der Aalst, W.M.P.: User-guided discovery of declarative process models. In: Proceedings of the IEEE Symposium on Computational Intelligence and Data Mining, CIDM 2011, part of the IEEE Symposium Series on Computational Intelligence 2011, Paris, France, 11–15 April 2011, pp. 192–199 (2011)
Google Scholar
Mendling, J.: Metrics for Process Models: Empirical Foundations of Verification, Error Prediction, and Guidelines for Correctness. Lecture Notes in Business Information Processing, vol. 6. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89224-3
CrossRef
Google Scholar
Michailidou, A., Gounaris, A.: Bi-objective traffic optimization in geo-distributed data flows. Big Data Res. 16, 36–48 (2019)
CrossRef
Google Scholar
Nardelli, M., Cardellini, V., Grassi, V., Presti, F.L.: Efficient operator placement for distributed data stream processing applications. IEEE Trans. Parallel Distrib. Syst. 30(8), 1753–1767 (2019)
CrossRef
Google Scholar
Pesic, M., van der Aalst, W.M.P.: A declarative approach for flexible business processes management. In: Eder, J., Dustdar, S. (eds.) BPM 2006. LNCS, vol. 4103, pp. 169–180. Springer, Heidelberg (2006). https://doi.org/10.1007/11837862_18
CrossRef
Google Scholar
Pesic, M., Schonenberg, H., van der Aalst, W.M.P.: DECLARE: full support for loosely-structured processes. In: 11th IEEE International Enterprise Distributed Object Computing Conference (EDOC 2007), pp. 287–300 (2007)
Google Scholar
Polyvyanyy, A., García-Bañuelos, L., Dumas, M.: Structuring acyclic process models. Inf. Syst. 37(6), 518–538 (2012)
CrossRef
Google Scholar
Polyvyanyy, A., Ouyang, C., Barros, A., van der Aalst, W.M.P.: Process querying: enabling business intelligence through query-based process analytics. Decis. Support Syst. 100, 41–56 (2017)
CrossRef
Google Scholar
Pourmasoumi, A., Bagheri, E.: Business process mining. CoRR abs/1607.00607 (2016)
Google Scholar
Rheinländer, A., Leser, U., Graefe, G.: Optimization of complex dataflows with user-defined functions. ACM Comput. Surv. 50(3), 38:1–38:39 (2017)
Google Scholar
Rosa, M.L., et al.: Managing process model complexity via abstract syntax modifications. IEEE Trans. Ind. Inf. 7(4), 614–629 (2011)
CrossRef
Google Scholar
Sakr, S., Maamar, Z., Awad, A., Benatallah, B., van der Aalst, W.M.P.: Business process analytics and big data systems: a roadmap to bridge the gap. IEEE Access 6, 77308–77320 (2018)
CrossRef
Google Scholar
Schunselaar, D.: Configurable process trees: elicitation, analysis, and enactment (2016)
Google Scholar
Simitsis, A., Wilkinson, K., Castellanos, M., Dayal, U.: Optimizing analytic data flows for multiple execution engines. In: SIGMOD Conference, pp. 829–840 (2012)
Google Scholar
Simitsis, A., Wilkinson, K., Dayal, U., Castellanos, M.: Optimizing ETL workflows for fault-tolerance. In: ICDE, pp. 385–396 (2010)
Google Scholar
Tao, J., Deokar, A.V.: An organizational mining approach based on behavioral process patterns. In: 20th Americas Conference on Information Systems, AMCIS 2014, Savannah, Georgia, USA, 7–9 August 2014 (2014)
Google Scholar
Tsakalidis, G., Vergidis, K., Kougka, G., Gounaris, A.: Eligibility of BPMN models for business process redesign. Information 10(7), 225 (2019)
CrossRef
Google Scholar
Vanhatalo, J., Völzer, H., Koehler, J.: The refined process structure tree. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS, vol. 5240, pp. 100–115. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85758-7_10
CrossRef
Google Scholar
Varol, Y.L., Rotem, D.: An algorithm to generate all topological sorting arrangements. Comput. J. 24(1), 83–84 (1981)
MATH
CrossRef
Google Scholar
Vergidis, K., Tiwari, A., Majeed, B.: Business process analysis and optimization: beyond reengineering. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 38(1), 69–82 (2008)
Google Scholar
Wolf, F., Brendle, M., May, N., Willems, P.R., Sattler, K., Grossniklaus, M.: Robustness metrics for relational query execution plans. PVLDB 11(11), 1360–1372 (2018)
Google Scholar
Yilmaz, O., Karagoz, P.: Generating performance improvement suggestions by using cross-organizational process mining. In: Proceedings of the 5th International Symposium on Data-driven Process Discovery and Analysis (SIMPDA 2015), Vienna, Austria, 9–11 December 2015, pp. 3–17 (2015)
Google Scholar
Zaharia, M., et al.: Apache spark: a unified engine for big data processing. Commun. ACM 59(11), 56–65 (2016)
CrossRef
Google Scholar
van Zelst, S.J., van Dongen, B.F., van der Aalst, W.M.P.: Event stream-based process discovery using abstract representations. Knowl. Inf. Syst. 54(2), 407–435 (2018)
CrossRef
Google Scholar