Skip to main content

Combining Process Mining and Machine Learning for Lead Time Prediction in High Variance Processes

  • Conference paper
  • First Online:
Production at the leading edge of technology (WGP 2020)

Part of the book series: Lecture Notes in Production Engineering ((LNPE))

Included in the following conference series:

  • 2946 Accesses

Abstract

Machine learning offers a high potential for the prediction of manufacturing lead times. In practical operations the lack of defined processes and high-quality input data are a major obstacle for the use of machine learning. The method of process mining creates a better transparency of such workflows and enriches related data. This paper develops a method, which combines the benefits of machine learning and process mining with the goal of high accuracy lead time prediction. The method is focused on high variance processes and verified with a case study containing real industrial data from heavy engine assembly processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  1. ElMaraghy, H., Schuh, G., ElMaraghy, W., Piller, F., Schönsleben, P., Tseng, M., Bernard, A.: Product variety management. CIRP Ann. 62, 629–652 (2013)

    Article  Google Scholar 

  2. Ivanov, A., Jaff, T.: Manufacturing lead time reduction and its effect on internal supply chain. In: Sustainable Design and Manufacturing 2017, pp. 398–407 (2017)

    Google Scholar 

  3. Heaton, J.: An empirical analysis of feature engineering for predictive modeling (2017)

    Google Scholar 

  4. Ballambettu, N.P., Suresh, M.A., Bose, R.P.J.C.: Analyzing process variants to understand differences in key performance indices. In: Advanced Information Systems Engineering, pp. 298–313 (2017)

    Google Scholar 

  5. Rose, L.T., Fischer, K.W.: Garbage in, garbage out: having useful data is everything. Measur. Interdisc. Res. Perspect. 9, 222–226 (2011)

    Google Scholar 

  6. Mannila, H.: Data mining: machine learning, statistics, and databases. In: Proceedings of 8th International Conference on Scientific and Statistical Data Base Management, pp. 2–9 (1996)

    Google Scholar 

  7. Kotsiantis, S.B., Zaharakis, I., Pintelas, P.: Supervised machine learning: a review of classification techniques. Emerg. Artif. Intell. Appl. Comp. Eng. 160, 3–24 (2007)

    Google Scholar 

  8. Choudhary, A.K., Harding, J.A., Tiwari, M.K.: Data mining in manufacturing: a review based on the kind of knowledge. J. Intell. Manuf. 20, 501–521 (2009)

    Article  Google Scholar 

  9. Cheng, Y., Chen, K., Sun, H., Zhang, Y., Tao, F.: Data and knowledge mining with big data towards smart production. J. Ind. Info. Integr. 9, 1–13 (2018)

    Google Scholar 

  10. Lingitz, L., Gallina, V., Ansari, F., Gyulai, D., Pfeiffer, A., Sihn, W., Monostori, L.: Lead time prediction using machine learning algorithms: a case study by a semiconductor manufacturer. Procedia CIRP 72, 1051–1056 (2018)

    Article  Google Scholar 

  11. Meidan, Y., Lerner, B., Rabinowitz, G., Hassoun, M.: Cycle-time key factor identification and prediction in semiconductor manufacturing using machine learning and data mining. IEEE Trans. Semicond. Manuf. 24, 237–248 (2011)

    Article  Google Scholar 

  12. Gyulai, D., Pfeiffer, A., Nick, G., Gallina, V., Sihn, W., Monostori, L.: Lead time prediction in a flow-shop environment with analytical and machine learning approaches. IFAC-PapersOnLine 51, 1029–1034 (2018)

    Article  Google Scholar 

  13. Pfeiffer, A., Gyulai, D., Kádár, B., Monostori, L.: Manufacturing lead time estimation with the combination of simulation and statistical learning methods. Procedia CIRP 41, 75–80 (2016)

    Article  Google Scholar 

  14. Öztürk, A., Kayalıgil, S., Özdemirel, N.E.: Manufacturing lead time estimation using data mining. Eur. J. Oper. Res. 173, 683–700 (2006)

    Article  MathSciNet  Google Scholar 

  15. Alenezi, A., Moses, S.A., Trafalis, T.B.: Real-time prediction of order flowtimes using support vector regression. Comp. Oper. Res. 35, 3489–3503 (2008)

    Article  Google Scholar 

  16. Mori, J., Mahalec, V.: Planning and scheduling of steel plates production. Part I: estimation of production times via hybrid Bayesian networks for large domain of discrete variables. Comp. Chem. Eng. 79, 113–34 (2015)

    Google Scholar 

  17. Schuh, G., Prote, J.-P., Molitor, M., Sauermann, F., Schmitz, S.: Databased learning of influencing factors in order specific transition times. Procedia Manuf. 31, 356–362 (2019)

    Article  Google Scholar 

  18. Schuh, G., Prote, J.-P., Sauermann, F., Franzkoch, B.: Databased prediction of order-specific transition times. CIRP Annals. 68, 467–470 (2019)

    Article  Google Scholar 

  19. Windt, K., Hütt, M.-T.: Exploring due date reliability in production systems using data mining methods adapted from gene expression analysis. CIRP Annals. 60, 473–476 (2011)

    Article  Google Scholar 

  20. Bandara, W., Gable, G.G., Rosemann, M.: Factors and measures of business process modelling: model building through a multiple case study. Eur. J. Inf. Syst. 14, 347–360 (2005)

    Article  Google Scholar 

  21. van der Aalst, W.: Process mining: discovering and improving Spaghetti and Lasagna processes. In: 2011 IEEE Symposium on Computational Intelligence and Data Mining (CIDM), pp. 1–7 (2011)

    Google Scholar 

  22. Rozinat, A., Jong, I.S.M. de, Gunther, C. W., van der Aalst, W.M.P.: Process mining applied to the test process of wafer scanners in ASML. IEEE Trans. Sys. Man Cybern. Part C (Appl. Rev.) 39, 474–79 (2009)

    Google Scholar 

  23. Park, J., Lee, D., Zhu, J.: An integrated approach for ship block manufacturing process performance evaluation: case from a Korean shipbuilding company. Int. J. Prod. Econ. 156, 214–222 (2014)

    Article  Google Scholar 

  24. Tu, T.B.H., Song, M.: Analysis and prediction cost of manufacturing process based on process mining. In: 2016 International Conference on Industrial Engineering, Management Science and Application (ICIMSA), pp. 1–5 (2016)

    Google Scholar 

  25. Pospíšil, M., Mates, V., Hruška, T., Bartík, V.: Process mining in a manufacturing company for predictions and planning. Int. J. Adv. Softw. 6(3 & 4), 2013 (2013)

    Google Scholar 

  26. Knoll, D., Reinhart, G., Prüglmeier, M.: Enabling value stream mapping for internal logistics using multidimensional process mining. Expert Syst. Appl. 124, 130–142 (2019)

    Article  Google Scholar 

  27. Becker, T., Intoyoad, W.: Context aware process mining in logistics. Procedia CIRP 63, 557–562 (2017)

    Article  Google Scholar 

  28. Wallis, R., Erohin, O., Klinkenberg, R., Deuse, J., Stromberger, F.: Data mining-supported generation of assembly process plans. Procedia CIRP 23, 178–183 (2014)

    Article  Google Scholar 

  29. Wirth, R., Hipp, J.: CRISP-DM: Towards a standard process model for data mining. In: Proceedings of the 4th International Conference on the Practical Applications of Knowledge Discovery and Data Mining, pp. 29–39

    Google Scholar 

  30. Fayyad, U., Piatetsky-Shapiro, G., Smyth, P.: From data mining to knowledge discovery in databases. AI Mag. 17, 37 (1996)

    Google Scholar 

  31. van der Aalst, W., Adriansyah, A., Medeiros: Process Mining Manifesto. In: Business Process Management Workshops, pp. 169–94 (2012)

    Google Scholar 

  32. Mitchell, T. M.: Machine Learning. Singapore (1997)

    Google Scholar 

  33. Kass, G.V.: An exploratory technique for investigating large quantities of categorical data. Appl. Stat. 29, 119 (1980)

    Article  Google Scholar 

  34. Therneau, T. M., Atkinson, E. J.: An introduction to recursive partitioning using the RPART routines (1997)

    Google Scholar 

Download references

Acknowledgements

Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy – EXC-2023 Internet of Production – 390621612.

The authors would also like to thank MAN Truck & Bus SE for their kind support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Welsing .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer-Verlag GmbH, DE , part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Welsing, M., Maetschke, J., Thomas, K., Gützlaff, A., Schuh, G., Meusert, S. (2021). Combining Process Mining and Machine Learning for Lead Time Prediction in High Variance Processes. In: Behrens, BA., Brosius, A., Hintze, W., Ihlenfeldt, S., Wulfsberg, J.P. (eds) Production at the leading edge of technology. WGP 2020. Lecture Notes in Production Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-62138-7_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-62138-7_53

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-62137-0

  • Online ISBN: 978-3-662-62138-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics