Skip to main content

Towards Adaptive System Behavior and Learning Processes for Active Exoskeletons

  • Conference paper
  • First Online:
Production at the leading edge of technology (WGP 2020)

Part of the book series: Lecture Notes in Production Engineering ((LNPE))

Included in the following conference series:

Abstract

Industrial workers still face work-related musculoskeletal disorders daily and therefore physical support systems like exoskeletons are being developed. Making these wearable robots adaptable to different tasks and users in terms of its support characteristics is expected to generate greater performance and broader acceptance. By analyzing relevant elements of joint tasks in groups of humans and the environment exoskeletons are typically being used in, this paper derives the need for a framework allowing for adaption of the exoskeleton to the task, but also predictability for the user of the exoskeleton. A situation aware gain-scheduling controller with internal state feedback to the user is proposed as a means for adaption and predictability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bogue, R.: Exoskeletons – a review of industrial applications. Industrial Robot: An Intern. J. 45(5), 585–590 (2018)

    Article  Google Scholar 

  2. Fox, S., Aranko, O.: Exoskeletons: Comprehensive, comparative and critical manufacturing performance. J. Manuf. Technol. Manag. (2019)

    Google Scholar 

  3. de Looze, M.P., Bosch, T., Krause, F., Stadler, K.S., O’Sullivan, L.W.: Exoskeletons for industrial application and their potential effects on physical work load. Ergo 59, 1–11 (2016)

    Google Scholar 

  4. Hoffmann, N., Argubi-Wollesen, A., Linnenberg, C., Weidner, R.: Towards a Framework for Evaluating Exoskeletons. In: Production at the Leading Edge of Technology, pp. 441–450. Springer, Berlin (2019)

    Google Scholar 

  5. Weidner, R., Kong, N., Wulfsberg, J.P.: Human hybrid robot: a new concept for supporting manual assembly tasks. Prod. Eng. 7(6), 675–684 (2013)

    Article  Google Scholar 

  6. Weidner, R., Karafillidis, A.: Distinguishing support technologies. A general scheme and its application to exoskeletons. In: Karafillidis, A., Weidner, R. (eds.) Developing Support Technologies, pp. 85–100. Springer, Cham (2018)

    Google Scholar 

  7. Otten, B., Weidner, R., Argubi-Wollesen, A.: Evaluation of a novel active exoskeleton for tasks at or above head level. IEEE Robot. Autom. Lett. 3(3), 2408–2415 (2018)

    Article  Google Scholar 

  8. Argubi-Wollesen, A., Weidner, R.: Biomechanical analysis: adapting to users’ physiological preconditions and demands by the use of biomechanical analysis. In: Karafillidis, A., Weidner, R. (eds.) Developing Support Technologies, pp. 47–62. Springer, Cham (2018)

    Google Scholar 

  9. Maurice, P., Ivaldi, S., Babic, J., Camernik, J., Gorjan, D., Schirrmeister, B., Bornmann, J., Tagliapietra, L., Latella, C., Pucci, D., Fritzsche, L., Ivaldi, S., Babic, J.: Objective and subjective effects of a passive exoskeleton on overhead work. IEEE Trans. Neural. Syst. Rehabil. Eng. 28(1), 152–164 (2020)

    Article  Google Scholar 

  10. Spada, S., Ghibaudo, L., Gilotta, S., Gastaldi, L., Cavatorta, M.P.: Investigation into the applicability of a passive upper-limb exoskeleton in automotive industry. Procedia Manuf. 11, 1255–1262 (2017)

    Article  Google Scholar 

  11. Amandels, S., Op het Eyndt, H.O., Daenen, L., Hermans, V.: Introduction and testing of a passive exoskeleton in an industrial working environment. Adv. Intell. Syst. Comput. 820, 387–392 (2019)

    Google Scholar 

  12. Baltrusch, S.J., van Dieën, J.H., van Bennekom, C.A.M., Houdijk, H.: The effect of a passive trunk exoskeleton on functional performance in healthy individuals. Appl. Ergon. 72, 94–106 (2018)

    Article  Google Scholar 

  13. Chen, B., Grazi, L., Lanotte, F., Vitiello, N., Crea, S.: A real-time lift detection strategy for a hip exoskeleton. Front. Neurorobot. 12, 1–11 (2018)

    Article  Google Scholar 

  14. Lockheed Martin. Homepage https://www.lockheedmartin.com/en-us/products/exoskeleton-technologies/industrial.html. Acessed 28 March 2020

  15. Van Engelhoven, L., Kazerooni, H.: Design and intended use of a passive actuation strategy for a shoulder supporting exoskeleton. In: WearRAcon, pp. 7–12 (2019)

    Google Scholar 

  16. Koopman, A.S., Toxiri, S., Power, V., Kingma, I., van Dieën, J.H., Ortiz, J., de Looze, M.P.: The effect of control strategies for an active back-support exoskeleton on spine loading and kinematics during lifting. J. Biomech. 91, 14–22 (2019)

    Article  Google Scholar 

  17. Yao, Z., Linnenberg, C., Weidner, R., Wulfsberg, J.P.: Development of a soft power suit for lower back assistance. Proceedings of the IEEE International Conference on Robotics and Automation, pp. 5103–5109 (2019) (2019)

    Google Scholar 

  18. Mason, M.T.: Toward robotic manipulation. Annu. Rev. Cont. Robot. Auton. Syst. 1(19), 1–28 (2018)

    Google Scholar 

  19. Sebanz, N., Knoblich, G.: Prediction in joint action: what, when, and where. Top. Cogn. Sci. 1, 353–367 (2009)

    Article  Google Scholar 

  20. Vesper, C., van der Wel, R.P., Knoblich, G., Sebanz, N.: Are you ready to jump? Predictive mechanisms in interpersonal coordination. J. Exp. Psychol. Hum. Percept. Perform. 39(1), 48–61 (2013)

    Article  Google Scholar 

  21. van der Steen, M.C., Keller, P.E.: The ADaptation and Anticipation Model (ADAM) of sensorimotor synchronization. Front. Hum. Neurosci. 7, 253 (2013)

    Google Scholar 

  22. Peternel, L., Noda, T., Petrič, T., Ude, A., Morimoto, J., Babič, J.: Adaptive control of exoskeleton robots for periodic assistive behaviours based on EMG feedback minimisation. PLoS One 11(2), 1–26 (2016)

    Article  Google Scholar 

  23. Knoblich, G., Jordan, J.S.: Action coordination in groups and individuals: learning anticipatory control. J. Exp. Psychol. Learn. Mem. Cogn. 29(5), 1006–1016 (2003)

    Article  Google Scholar 

  24. Huang, C.M., Mutlu, B.: Anticipatory Robot Control for Efficient Human-Robot Collaboration. In: ACM/IEEE International Conference on Human-Robot Interaction, pp. 83–90 (2016)

    Google Scholar 

  25. Lobo-Prat, J., Kooren, P.N., Stienen, A.H., Herder, J.L., Koopman, B.F.J.M., Veltink, P.H.: Non-invasive control interfaces for intention detection in active movement-assistive devices. J. Neuroeng. Rehabil. 11(168), 1–22 (2014)

    Google Scholar 

  26. Bances, E., Schneider, U., Siegert, J.T.B.: Exoskeletons towards industrie 4.0: benefits and challenges of the IoT communication architecture. Procedia Manuf. 42, 49–56 (2020)

    Article  Google Scholar 

  27. Ajoudani, A., Zanchettin, A.M., Ivaldi, S., Albu-Schäffer, A., Kosuge, K., Khatib, O.: Progress and prospects of the human–robot collaboration. Auton. Robots 42, 957–975 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

Parts of this research are funded by the Federal Ministry of Education and Research (BMBF) in the project “smart ASSIST – Smart, Adjustable, Soft and Intelligent Support Technologies” (funding number 16SV71114) and “Exo@Work - Influences of Exoskeletons on the workplace” (funded by the German employers’ liability insurance association (BGHW)). The authors are solely responsible for the manuscript content.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Otten .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer-Verlag GmbH, DE , part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Otten, B., Hoffmann, N., Weidner, R. (2021). Towards Adaptive System Behavior and Learning Processes for Active Exoskeletons. In: Behrens, BA., Brosius, A., Hintze, W., Ihlenfeldt, S., Wulfsberg, J.P. (eds) Production at the leading edge of technology. WGP 2020. Lecture Notes in Production Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-62138-7_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-62138-7_48

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-62137-0

  • Online ISBN: 978-3-662-62138-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics