Increasing Efficiency in Maintenance Processes Through Modular Service Bundles

Conference paper
Part of the Lecture Notes in Production Engineering book series (LNPE)


Increasing complexity in production and factory automation represents a significant challenge in context of maintenance. One approach to address complexity is the implementation of automated industrial service bundles, which resemble complex business processes. To enable efficient usage of service bundles, their individual components are designed as functional modules in the form of independent micro services and are compatible with the paradigm of service-oriented architectures. For ubiquitous communication and data exchange between service entities, message-oriented middleware provides an adequate solution. This paper presents an approach for increasing efficiency in maintenance using a service bundle. The use case demonstrates the automated creation of service tickets enriched with necessary information from various sources.


Smart services Service bundle Smart maintenance Process automation 



The research presented in this paper was funded by the German Federal Ministry of Education and Research in the course of the project PRODISYS (FKZ 02K16C056).


  1. 1.
    Herterich, M.M., Uebernickel, F., Brenner, W.: The impact of cyber-physical systems on industrial services in manufacturing. Procedia CIRP 30, 323–328 (2015)CrossRefGoogle Scholar
  2. 2.
    Serrano, N., Hernantes, J., Gallardo, G.: Service-oriented architecture and legacy systems. IEEE Softw. 31(5), 15–19 (2014)CrossRefGoogle Scholar
  3. 3.
    Uhlemann, T.H.J., Lehmann, C., Steinhilper, R.: The digital twin: realizing the cyber-physical production system for industry 4.0. Procedia CIRP 61, 335–340 (2017)CrossRefGoogle Scholar
  4. 4.
    Fuchs, J., Schmidt, J., Franke, J. et al.: I4.0-compliant integration of assets utilizing the asset administration shell. In: Proceedings, 2019 24th IEEE International Conference on Emerging Technologies And Factory Automation (ETFA): Paraninfo Building, University of Zaragoza, Zaragoza, Spain, 10–13 September, 2019, pp. 1243–1247. IEEE, Piscataway, NJ (2019)Google Scholar
  5. 5.
    Heutschi, R.: Serviceorientierte Architektur. Springer, Heidelberg (2007) Google Scholar
  6. 6.
    Josuttis, N.: SOA in der Praxis, 1. Aufl., korr. Nachdr. Dpunkt-Verl., Heidelberg (2009)Google Scholar
  7. 7.
    Bruhn, M., Hadwich, K.: Dienstleistungen 4.0, 1. Aufl. Springer, Wiesbaden (2017)CrossRefGoogle Scholar
  8. 8.
    Fuchs, J., Oks, S.J., Franke, J.: Platform-based service composition for manufacturing: a conceptualization. Procedia CIRP 81, 541–546 (2019)CrossRefGoogle Scholar
  9. 9.
    Newman, S.: Building Microservices, 1st edn. O’Reilly Media, Sebastopol (2015)Google Scholar
  10. 10.
    Fowler M., Lewis J.: Microservices: a definition of this new architectural term (2014). Accessed 6 Apr 2020
  11. 11.
    Sommer, P., Schellroth, F., Fischer, M. et al.: Message-oriented middleware for industrial production systems. In: Vogel-Heuser, B. (Hrsg.). 2018 IEEE 14th International Conference on Automation Science And Engineering (CASE), 20–24 August 2018, pp. 1217–1223. IEEE, Piscataway (2018)Google Scholar
  12. 12.
    Hohpe, G., Woolf, B.: Enterprise Integration Patterns, 9a reimp. Addison-Wesley signature series, Boston (2015)Google Scholar
  13. 13.
    Razzaque, M.A., Milojevic-Jevric, M., Palade, A., et al.: Middleware for internet of things: a survey. IEEE Internet Things J. 3(1), 70–95 (2016)CrossRefGoogle Scholar
  14. 14.
    Yongguo, J., Qiang, L., Changshuai, Q. et al.: Message-oriented middleware: a review. In: 2019 5th International Conference on Big Data Computing and Communications (BIGCOM), pp. 88–97. IEEE (2019)Google Scholar
  15. 15.
    Graube, M., Hensel, S., Iatrou, C. et al.: Information models in OPC UA and their advantages and disadvantages. In: 22nd IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), pp. 1–8. IEEE (2017)Google Scholar
  16. 16.
    Oks, S.J., Fritzsche, A., Möslein, K.M.: An application map for industrial cyber-physical systems. In: Jeschke, S., Brecher, C., Song, H. (eds.) Industrial Internet of Things, 21–47. Springer, Cham (2017) Google Scholar
  17. 17.
    Jantunen, E., Zurutuza, U., Ferreira, L. L. et al.: Optimising maintenance. In: 3rd International Workshop on Emerging Ideas and Trends in Engineering of Cyber-Physical Systems (EITEC), pp. 53–58. IEEE, Piscataway (2016)Google Scholar
  18. 18.
    Kruchten, P.B.: The 4+1 view model of architecture. IEEE Softw. 12(6), 42–50 (1995)CrossRefGoogle Scholar
  19. 19.
    Kuehl, A., Zitzelsberger, M., Seefried, J. et al.: Hot crimping through innovative inductive heating in the production of electric motors. In: 2019 IEEE International Electric Machines & Drives Conference (IEMDC), May 12–15, Westin San Diego, San Diego, CA, pp. 1404–1409. IEEE, Piscataway (2019)Google Scholar

Copyright information

© The Author(s), under exclusive license to Springer-Verlag GmbH, DE , part of Springer Nature 2021

Authors and Affiliations

  1. 1.Institute for Factory Automation and Production SystemsFriedrich-Alexander University, Erlangen-NurembergErlangenGermany
  2. 2.Chair of Information Systems, Innovation and Value CreationFriedrich-Alexander-Univer-Sity Erlangen-NurembergNurembergGermany

Personalised recommendations