Skip to main content
  • 29k Accesses

Zusammenfassung

Das Strahlungsangebot, die Versorgung mit Wasser und Mineralstoffen sowie, auf der Basis dieser Voraussetzungen, der Einbau von Kohlenstoff für Wachstum und Biomasseproduktion sind die wichtigsten Bindeglieder zwischen Pflanzen und ihrer physikochemischen Umwelt. Die biochemischen und physiologischen Grundlagen hierzu wurden in früheren Kapiteln behandelt. Im vorliegenden Kapitel werden die Reaktionen von Einzelpflanzen, Pflanzengemeinschaften und Ökosystemen auf die natürliche Variabilität des Strahlungs-, Wasser- und Nährstoffangebots dargestellt und der Kohlenstoffhaushalt in seiner ökologischen Dimension erörtert. Biologische Wechselwirkungen und der Einfluss des Menschen auf die Vegetation sowie die Nutzung von Pflanzen werden abschließend besprochen.

Körner, C. 2021 Pflanzen im Lebensraum. In: Kadereit JW, Körner C, Nick P, Sonnewald U. Strasburger – Lehrbuch der Pflanzenwissenschaften. Springer Berlin Heidelberg, p. 947–1012. ► https://doi.org/10.1007/978-3-662-61943-8_22

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Quellenverzeichnis

  • Bader MKF, Leuzinger S, Keel SG, Siegwolf RTW, Hagedorn F, Schleppi P, Körner C (2013) Central European hardwood trees in a high-CO2 future: synthesis of an 8-year forest canopy CO2 enrichment project. J Ecol 101:1509–1519

    Article  CAS  Google Scholar 

  • Ballare CL, Sanchez RA, Scopel AL, Ghersa CM (1988) Morphological responses of Datura ferox L. seedlings to the presence of neighbours. Their relationships with canopy microclimate. Oecologia 76:288–293

    Article  CAS  PubMed  Google Scholar 

  • Bar-On YM, Phillips R, Milo R (2018) The biomass distribution on Earth. Proc Natl Acad Sci U S A 115(25):6506–6511. https://doi.org/10.1073/pnas.1711842115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berendse F, Aerts R (1987) Nitrogen-use-efficiency: a biologically meaningful definition? Funct Ecol 1:293–296

    Google Scholar 

  • Bergametti G, Dulac F (1998) Mineral aerosols: renewed interest for climate forcing and tropospheric chemistry studies. IGBP Newsl 33:19–23

    Google Scholar 

  • Braun-Blanquet J (1964) Pflanzensoziologie. Grundzüge der Vegetationskunde, 3. Aufl. Springer, Wien

    Google Scholar 

  • Brienen RJW and 14 co-authors (2020) Forest carbon sinks neutralized by pervasive growth-lifespan trade-offs. Nature communications 11: 4241. https://doi.org/10.1038/s41467-020-17966-z

  • Buckley TN (2005) The control of stomata by water balance. New Phytol 168:275–291

    Google Scholar 

  • Büntgen U, Krusic PJ, Piermattei A, Coomes DA, Esper J, Mygan VS Kirdyanov AV, Camarero JJ, Crivellaro A, Körner C (2019) Limited capacity of tree growth to mitigate the global greenhouse effect under predicted warming. Nature Com 10. https://doi.org/10.1038/s41467-019-10174-4

  • Buringh P, Dudal R (1987) Agricultural land use in space and time. In: Wolman MG, Fournier FGA (Hrsg) Land transformation in agriculture. Scope, Wiley, Chichester

    Google Scholar 

  • Caldwell MM, Eissenstat DM, Richards JH, Allen MF (1985) Competition for phosphorus: differential uptake from dual-isotope-labelled soil interspaces between shrub and grass. Science 229:384–386

    Article  CAS  PubMed  Google Scholar 

  • Caldwell MM, Dawson TE, Richards JH (1998) Hydraulic lift: consequences of water efflux from the roots of plants. Oecologia 113:151–161

    Article  PubMed  Google Scholar 

  • Callaway RM, Walker LR (1997) Competition and faciliation: a synthetic approach to interactions in plant communities. Ecology 78:1958–1965

    Article  Google Scholar 

  • Chapin FS III, Shaver GR, Kedrowski RA (1986) Environmental controls over carbon, nitrogen and phosphorus fractions in Eriophorum vaginatum in Alaskan tussock tundra. J Ecol 74:167–195.

    Article  CAS  Google Scholar 

  • Chazdon RL, Pearcy RW, Lee DW, Fetcher N (1996) Photosynthetic responses of tropical forest plants to contrasting light environments. In: Mulkey SS, Chazdon RL, Smith AP (Hrsg) Tropical plant ecophysiology. Chapman & Hall, New York

    Google Scholar 

  • Clay K (1990) Fungal endophytes of grasses. Annu Rev Ecol Syst 21:275–297

    Article  Google Scholar 

  • Dierschke H, Briemle G (2002) Kulturgrasland. Ulmer, Stuttgart

    Google Scholar 

  • Duvigneaud P (1971) Productivity of forest ecosystems. Unesco, Paris

    Google Scholar 

  • Ehleringer JR, Cerling TE, Dearing MD (2005) A history of atmospheric CO2 and its effects on plants, animals, and ecosystems. Springer, New York

    Google Scholar 

  • Ellenberg H (1996) Vegetation Mitteleuropas mit den Alpen in ökologischer, dynamischer und historischer Sicht, 5. Aufl. Ulmer, Stuttgart

    Google Scholar 

  • Ellsworth DS, Anderson IC, Crous KY, Cooke J, Drake JE, Gherlenda AN, Gimeno TE, Macdonald CA, Medlyn BE, Powell JR, Tjoelker MG, Reich PB (2017) Elevated CO2 does not increase eucalypt forest productivity on a low-phosphorus soil. Nat Clim Chang 7:279–283

    Article  CAS  Google Scholar 

  • Evans LT, Dunstone RL (1970) Some physiological aspects of evolution in wheat. Aust J Biol Sci 23:725–741

    Article  Google Scholar 

  • Falkowski PG, Barber RT, Smetacek V (1998) Biogeochemical controls and feedbacks on ocean primary production. Science 281:200–206

    Article  CAS  PubMed  Google Scholar 

  • Franks P, Brodribb TJ (2005) Stomatal control and water transport in the xylem. In: Holbrook NM, Zwieniecki MA (Hrsg) Vascular transport in plants. Elsevier, Amsterdam

    Google Scholar 

  • Gifford RM, Evans LT (1981) Photosynthesis, carbon partitioning, and yield. Annu Rev Plant Physiol 32:485–509

    Article  CAS  Google Scholar 

  • Gillner V (1960) Vegetations-und Standortsuntersuchungen in den Strandwiesen der schwedischen Westküste. Acta Phytogeogr Suec 43:1–198

    Google Scholar 

  • Glatzel G (1990) The nitrogen status of Austrian forest ecosystems as influenced by atmospheric deposition, biomass harvesting and lateral organomass exchange. Plant Soil 128:67–74

    Article  CAS  Google Scholar 

  • Grace J (1997) Toward models of resource allocation by plants. In: Bazzaz FA, Grace J (Hrsg) Plant resource allocation. Physiological ecology – A series of monographs texts and treatises. Academic, San Diego

    Google Scholar 

  • Güsewell S (2004) N:P ratios in terrestrial plants: variation and functional significance. New Phytol 164:243–266

    Article  PubMed  Google Scholar 

  • Haberl H, Erb KH, Krausmann F, Gaube V, Bondeau A, Plutzar C, Gingrich S, Lucht W, Fischer-Kowalski M (2007) Quantifying and mapping the human appropriation of net primary production in earth’s terrestrial ecosystems. Proc Natl Acad Sci U S A 104:12942–12945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamilton JG, DeLucia EH, George K, Naidu SL, Finzi AC, Schlesinger WH (2002) Forest carbon balance under elevated CO2. Oecologia 131:250–260

    Article  PubMed  Google Scholar 

  • Hansen J (2000) Überleben in der Kälte – wie Pflanzen sich vor Froststress schützen. Biol Unserer Zeit 30:24–34

    Google Scholar 

  • Hättenschwiler S, Miglietta F, Raschi A, Körner C (1997) Thirty years of in situ tree growth under elevated CO2: a model for future forest responses? Glob Chang Biol 3:436–471

    Article  Google Scholar 

  • Hoch G, Körner C (2003) The carbon charging of pines at the climatic treeline: a global comparison. Oecologia 135:10–21

    Article  PubMed  Google Scholar 

  • Ingestad T (1982) Relative addition rate and external concentration driving variables used in plant nutrition research. Plant Cell Environ 5:443–453

    Article  CAS  Google Scholar 

  • Jackson RB, Canadell J, Ehleringer JR, Mooney HA, Sala OE, Schulze ED (1996) A global analysis of root distributions for terrestrial biomes. Oecologia 108:389–411

    Article  CAS  PubMed  Google Scholar 

  • Jiang M, Medlyn BE, Drake JE et al. (2019) The fate of carbon in a mature forest under carbon dioxide enrichment. BioRxiv preprint, https://doi.org/10.1101/696898

  • Kimball BA, Kobayashi K, Bindi M (2002) Responses of agricultural crops to free-air CO2 enrichment. Adv Agron 77:293–368

    Article  Google Scholar 

  • Klein T, Bader MKF, Leuzinger S, Mildner M, Schleppi P, Siegwolf RTW, Körner C (2016) Growth and carbon relations of mature Picea abies trees under 5years of free-air CO2 enrichment. J Ecol 104:1720–1733

    Article  CAS  Google Scholar 

  • Körner C (1989) The nutritional status of plants from high altitudes. A worldwide comparison. Oecologia 81:379–391

    Article  PubMed  Google Scholar 

  • Körner Ch (1993) Scaling from species to vegetation: the usefulness of functional groups. In: Schulze ED, Mooney HA (Hrsg) Biodiversity and ecosystem function. Springer, Berlin, S 117–140

    Google Scholar 

  • Körner C (1997) Die biotische Komponente im Energiehaushalt: lokale und globale Aspekte. Verh Ges dt Naturf Ärzte 119:97–123

    Google Scholar 

  • Körner Ch (1998) Alpine plants: stressed or adapted? In: Press MC, Scholes JD, Barker MG (Hrsg) Physiological plant ecology. Blackwell, Oxford

    Google Scholar 

  • Körner C (2003) Alpine plant life, 2. Aufl. Springer, Berlin

    Book  Google Scholar 

  • Körner C (2004) Through enhanced tree dynamics carbon dioxide enrichment may cause tropical forests to lose carbon. Philos Trans R Soc Lond Ser B-Biol Sci 359:493–498

    Article  CAS  Google Scholar 

  • Körner C (2006) Plant CO2 responses: an issue of definition, time and resource supply. New Phytol 172:393–411

    Article  PubMed  CAS  Google Scholar 

  • Körner C (2015) Paradigm shift in plant growth control. Curr Opin Plant Biol 25:107–114

    Article  PubMed  CAS  Google Scholar 

  • Körner C (2017) A matter of tree longevity. Science 355:130–131

    Article  PubMed  Google Scholar 

  • Körner C (2019) No need for pipes when the well is dry: a comment on hydraulic failure in trees. Tree Physiol 39:695–700

    Article  PubMed  Google Scholar 

  • Körner C (2021) Alpine plant life (3. Aufl.) Springer, Cham

    Google Scholar 

  • Körner C, Cochrane PM (1985) Stomatal responses and water relations of Eucalyptus pauciflora in summer along an elevational gradient. Oecologia 66:443–455

    Article  PubMed  Google Scholar 

  • Körner C, Scheel JA, Bauer H (1979) Maximum leaf diffusive conductance in vascular plants. Photosynthetica 13:45–82

    Google Scholar 

  • Körner C, Basler D, Hoch G, Kollas C, Lenz A, Randin CF, Vitasse Y, Zimmermann NE (2016) Where, why and how? Explaining the low-temperature range limits of temperate tree species. J Ecol 104:1076–1088

    Article  CAS  Google Scholar 

  • Krause HH (1982) Nitrate formation and movement before and after clear-cutting of a monitored watershed in central New Brunswick, Canada. Can J For Res 12:922–930

    Article  CAS  Google Scholar 

  • Kutschera U, Lichtenegger E (1997) Bewurzelung von Pflanzen in den verschiedenen Lebensräumen. Wurzelatlas Reihe 5. OÖ Landesmuseum, Linz

    Google Scholar 

  • Lambers H, Poorter H, Van Vuuren MMI (1998) Inherent variation in plant growth. Physiological mechanisms and ecological consequences. Backhuys, Leiden

    Google Scholar 

  • Lange OL, Green TGA (2005) Lichens show that fungi can acclimate their respiration to seasonal changes in temperature. Oecologia 142:11–19

    Article  PubMed  Google Scholar 

  • Lange OL, Lösch R, Schulze ED, Kappen L (1971) Responses of stomata to changes in humidity. Planta 100:76–86

    Article  CAS  PubMed  Google Scholar 

  • Larigauderie A, Körner C (1995) Acclimation of leaf dark respiration to temperature in alpine and lowland plant species. Ann Bot 76:245–252

    Article  Google Scholar 

  • Le Quéré C, Andrew RM, Canadell JG et al (2016) Global carbon budget 2016. Earth Syst Sci Data 8:605–649

    Article  Google Scholar 

  • Leuning R, Cromer RN, Rance S (1991) Spatial distribution of foliar nitrogen and phosphorus in crowns of Eucalyptus grandis. Oecologia 88:504–551

    Article  CAS  PubMed  Google Scholar 

  • Leuzinger S, Körner C (2007) Water savings in mature deciduous forest trees under elevated CO2. Glob Chang Biol 13:1–11

    Article  Google Scholar 

  • Leuzinger S, Vogt R, Körner C (2010) Tree surface temperature in an urban environment. Agric For Meteorol 150:56–62

    Article  Google Scholar 

  • Lüthi D, Le Floch M, Bereiter B, Blunier T, Barnola JM, Siegenthaler U, Raynaud D, Jouzel J, Fischer H, Kawamura K, Stocker TF (2008) High-resolution carbon dioxide concentration record 650.000–800.000 years before present. Nature 453:379–382

    Article  PubMed  CAS  Google Scholar 

  • Meinzer FC (1993) Stomatal control of transpiration. Trends Ecol Evol 8:289–294

    Article  CAS  PubMed  Google Scholar 

  • Miroslavov EA, Kravkina IM (1991) Comparative analysis of chloroplasts and mitochondria in leaf chlorenchyma from mountain plants grown at different altitudes. Ann Bot 68:195–200

    Article  Google Scholar 

  • Monsi M, Saeki T (1953) Über den Lichtfaktor in den Pflanzengesellschaften und seine Bedeutung für die Stoffproduktion. Jpn J Bot 14:22–52

    Google Scholar 

  • Morgan JA, Pataki DE, Körner C, Clark H, Del Grosso SJ, Grünzweig JM, Knapp AK, Mosier AR, Newton PCD, Niklaus PA, Nippert JB, Nowak RS, Parton WJ, Polley HW, Shaw MR (2004) Water relations in grassland and desert ecosystems exposed to elevated atmospheric CO2. Oecologia 140:11–25

    Article  CAS  PubMed  Google Scholar 

  • Muller B, Pantin F, Genard M, Turc O, Freixes S, Piques M, Gibon Y (2011) Water deficits uncouple growth from photosynthesis, increase C content, and modify the relationships between C and growth in sink organs. J Exp Bot 62:1715–1729

    Article  CAS  PubMed  Google Scholar 

  • Norton M und 15 Ko-Autoren (2019) Serious mismatches continue between science and policy in forest bioenergy. Global Change Biology - Bioenergy, https://doi.org/10.1111/gcbb.12643

  • Novoplansky A, Cohen D, Sachs T (1990) How portulac seedlings avoid their neighbours. Oecologia 82:490–493

    Article  PubMed  Google Scholar 

  • Ostonen I, Püttsepp Ü, Biel C, Alberton O, Bakker MR, Löhmus K, Majdi H, Metcalfe D, Olsthoorn AFM, Pronk A, Vanguelova E, Weih M, Brunner I (2007) Specific root length as an indicator of environmental change. Plant Biosystems 141:426–442.

    Article  Google Scholar 

  • Owensby CE, Ham JM, Knapp AK, Bremer D, Auen LM (1997) Water vapour fluxes and their impact under elevated CO2 in a C4-tallgrass prairie. Glob Chang Biol 3:189–195

    Article  Google Scholar 

  • Parrenin F, Barnola JM, Beer J et al (2007) The EDC3 chronology for the EPICA dome C ice core. Clim Past 3:485–497

    Article  Google Scholar 

  • Pedersen O, Sand-Jensen K (1993) Water transport in submerged macrophytes. Aquat Bot 44:385–406

    Article  Google Scholar 

  • Pisek A, Larcher W, Vegis A, Napp-Zinn K (1973) The normal temperature range. In: Precht H, Christophersen J, Hensel H, Larcher W (Hrsg) Temperature and life. Springer, Berlin

    Google Scholar 

  • Poorter H, Van der Werf A (1998) Is inherent variation in RGR determined by LAR at low irradiance and NAR at high irradiance? A review of herbaceous species. In: Lambers H, Poorter H, van Vuuren MMI (Hrsg) Inherent variation in plant growth. Backhuys, Leiden

    Google Scholar 

  • Reich PB, Walters MB, Ellsworth DS (1992) Leaf life-span in relation to leaf, plant, and stand characteristics among diverse ecosystems. Ecol Monogr 62:365–392

    Article  Google Scholar 

  • Reich PB, Walters MB, Ellsworth DS, Vose JM, Volin JC, Gresham C, Bowman WD (1998) Relationships of leaf dark respiration to leaf nitrogen, specific leaf area and leaf life-span: a test across biomes and functional groups. Oecologia 114:471–482

    Article  PubMed  Google Scholar 

  • Rosenfeld AH, Romm JJ (1996) Policies to reduce heat islands: magnitudes of benefits and incentives to achieve them. In: Proc 1996 ACEEE Summer Study on Energy Effieciency in Buildings. Pacific Grove, S 14

    Google Scholar 

  • Roy J, Saugier B, Mooney HA (Hrsg) (2001) Terrestrial global productivity. Academic, San Diego

    Google Scholar 

  • Rozema J, van de Staaij J, Bjorn LO, Caldwell M (1997) UV-B as an environmental factor in plant life: stress and regulation. Trends Ecol Evol 12:22–28

    Article  CAS  PubMed  Google Scholar 

  • Rundel PW (1981) Fire as an ecological factor. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (Hrsg) Encyclopedia of plant physiology, New Series 12 A, Physiological Plant Ecology I. Springer, Berlin

    Google Scholar 

  • Rundel PW, Ehleringer JR, Nagy KA (1989) Stable isotopes in ecological research. Springer, New York

    Book  Google Scholar 

  • Schulze ED, Lange OL, Buschbom U, Kappen L, Evenari M (1972) Stomatal responses to changes in humidity in plants growing in the desert. Planta 108:259–270

    Article  CAS  PubMed  Google Scholar 

  • Schulze ED, Rok J, Kroiher F, Egenolf V, Wellbrock N, Irslinger R (2021) Klimaschutz mit Wald. Biologie in unserer Zeit 51 (1):46–54

    Google Scholar 

  • Schurr U (1999) Dynamics of nutrient transport from the root to the shoot. In: Lüttge U (Hrsg) Progress in botany, vol. 60, Cell biology and physiology. Springer, Berlin, S 234–253

    Google Scholar 

  • Spinnler D, Egli P, Körner C (2002) Four-year growth dynamics of beech-spruce model ecosystems under CO2 enrichment on two different forest soils. Trees 16:423–436.

    Google Scholar 

  • Sterner RW, Elser JJ (2002) Ecological stoichiometry. Princeton University Press, Princeton

    Google Scholar 

  • Stocker O (1935) Assimilation und Atmung westjavanischer Tropenbaume. Planta 24:402–445

    Article  Google Scholar 

  • Stronach NRH, McNaughton SJ (1989) Grassland fire dynamics in the serengeti ecosystem, and a potential method of retrospectively estimating fire energy. J Appl Ecol 26:1025–1033

    Article  Google Scholar 

  • Tanner W, Beevers H (2001) Transpiration, a prerequisite for long-distance transport of minerals in plants? Proc Natl Acad Sci U S A 98:9443–9447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tateno M (2003) Benefit to N-2-fixing alder of extending growth period at the cost of leaf nitrogen loss without resorption. Oecologia 137:338–343

    Article  PubMed  Google Scholar 

  • Van der Heijden MGA, Klironomos J, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders I (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69–72

    Article  CAS  Google Scholar 

  • Vitousek PM (1994) Beyond global warming: ecology and global change. Ecology 75:1861–1876

    Article  Google Scholar 

  • Wacker L, Jacomet S, Körner C (2002) Trends in biomass fractionation in wheat and barley from wild ancestors to modern cultivars. Plant Biol 4:258–265

    Article  Google Scholar 

  • Walter H (1960) Grundlagen der Pflanzenverbreitung. I. Standortlehre, 2. Aufl. Ulmer, Stuttgart

    Google Scholar 

  • Walter H (1968) Die Vegetation der Erde II. Gustav Fischer, Jena

    Google Scholar 

  • Wardlaw IF (1990) Tansley Review No.27. The control of carbon partitioning in plants. New Phytol 116:341–381

    Article  CAS  PubMed  Google Scholar 

  • Weiner J, Andersen SB, Wille WKM, Griepentrog HW, Olsen JM (2010) Evolutionary Agroecology: the potential for cooperative, high density, weed-suppressing cereals. Evol Appl 3:473–479

    Article  PubMed  PubMed Central  Google Scholar 

  • Weiner J, Du YL, Zhang C, Qin XL, Li FM (2017) Evolutionary agroecology: individual fitness and population yield in wheat (Triticum aestivum). Ecology 98:2261–2266

    Article  PubMed  Google Scholar 

Weiterführende Literatur

  • Bergametti G, Dulac F (1998) Mineral aerosols: renewed interest for climate forcing and tropospheric chemistry studies. IGBP Newsl 33:19–23

    Google Scholar 

  • Canadell JG, Pataki DE, Pitelka LF (2007) Terrestrial ecosystems in a changing world. The IGBP series. Springer, Berlin

    Google Scholar 

  • Chabot BF, Mooney HA (1985) Physiological ecology of North American plant communities. Chapman & Hall, London

    Book  Google Scholar 

  • Ehleringer JR, Bowling DR, Flanagan LB, Fessenden J, Helliker B, Martinelli LA, Ometto JP (2002) Stable isotopes and carbon cycle processes in forests and grasslands. Plant Biol 4:181–189

    Article  Google Scholar 

  • Fageria NK, Baligar VC, Clark RB (2006) Physiology of crop production. Harworth, Binghamton

    Google Scholar 

  • Fitter AH, Hay RKM (2002) Environmental physiology of plants, 3. Aufl. Academic, San Diego

    Google Scholar 

  • Goldammer JG (1993) Feuer in Waldökosystemen der Tropen und Subtropen. Birkhäuser, Basel

    Google Scholar 

  • Goldammer JG, Furyaev V (1996) Fire in ecosystems of boreal eurasia. Kluwer, Dordrecht

    Book  Google Scholar 

  • Givnish TJ (1986) On the economy of plant form and function. Cambridge University Press, Cambridge

    Google Scholar 

  • Gregory PJ (2006) Plant roots. Growth, activity and interaction with soils. Blackwell, Oxford

    Book  Google Scholar 

  • Hall AE (2001) Crop responses to environment. CRC Press, Boca Raton

    Google Scholar 

  • Johnson EA, Miyanishi K (2001) Forest fires: behavior and ecological effects. Academic, London

    Google Scholar 

  • Jones HG (2014) Plants and microclimate. Cambridge University Press, Cambridge

    Google Scholar 

  • Körner C (2003) Alpine plant life. Springer, Berlin

    Book  Google Scholar 

  • Lambers H, Chapin FS, Pons TL (1998) Plant physiological ecology. Springer, New York

    Book  Google Scholar 

  • Lambers H, Poorter H, VanVuren MMI (1998) Inherent variation in plant growth. Physiological mechanisms and ecological consequences. Backhuys, Leiden

    Google Scholar 

  • Lange OL, Nobel PS, Osmond CB, Ziegler H (1981–1983) Physiological plant ecology, encyclopedia of plant physiology, New Series, vols 12 A–D. Springer, Berlin

    Google Scholar 

  • Larcher W (2003) Physiological plant ecology, 4. Aufl. Springer, Berlin

    Book  Google Scholar 

  • Loomis RS, Connor DJ (1992) Crop ecology: productivity and management in agricultural systems. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Lösch R (2001) Wasserhaushalt der Pflanzen. Quelle & Meyer, Wiebelsheim

    Google Scholar 

  • Lüttge U (1997) Physiological ecology of tropical plants. Springer, Berlin

    Book  Google Scholar 

  • Malhi Y, Phillips OL (2005) Tropical forests & global atmospheric change. Blackwell, Oxford

    Book  Google Scholar 

  • Morison JIL, Morecroft MD (2006) Plant growth and climate change. Blackwell, Oxford

    Book  Google Scholar 

  • Pearcy RW, Ehleringer JR, Mooney HA, Rundel PW (1989) Plant physiological ecology. Chapman & Hall, London

    Book  Google Scholar 

  • Roy J, Mooney HA, Saugier B (2001) Terrestrial global productivity. Academic, San Diego

    Google Scholar 

  • Sakai A, Larcher W (1987) Frost survival of plants. Responses and adaptation to freezing stress. Ecol studies 62. Springer, Berlin

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Körner .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Körner, C. (2021). Pflanzen im Lebensraum. In: Strasburger − Lehrbuch der Pflanzenwissenschaften. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-61943-8_22

Download citation

Publish with us

Policies and ethics