Skip to main content

PNF Basic Principles and Procedures for Facilitation

  • Chapter
  • First Online:
PNF in Practice

Abstract

The basic facilitation principles and procedures, when used correctly, provide tools for the therapist to use in helping the patient to gain efficient motor function and increased motor control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Brooks VB (1986) The neural basis of motor control. Oxford University Press, New York

    Google Scholar 

  • Chan CWY (1984) Neurophysiological basis underlying the use of resistance to facilitate movement. Physiother Can 36(6):335–341

    Google Scholar 

  • Conrad B, Meyer-Lohmann J (1980) The long-loop transcortical load compensating reflex. Trends Neurosci 3:269–272

    Article  Google Scholar 

  • Dudel JR, Menzel R, Schmidt RF (1996) Neurowissenschaft. Springer, Berlin

    Google Scholar 

  • Evarts EV, Tannji J (1974) Gating of motor cortex reflexes by prior instruction. Brain Res 71:479–494

    Article  PubMed  CAS  Google Scholar 

  • Fischer E (1967) Factors affecting motor learning. Am J Phys Med 46(1):511–519

    PubMed  CAS  Google Scholar 

  • Frank JS, Earl M (1990) Coordination of posture and movement. Phys Ther 70(12):109–117

    Article  Google Scholar 

  • Gellhorn E (1947) Patterns of muscular activity in man. Arch Phys Med 28:568–574

    Google Scholar 

  • Gellhorn E (1949) Proprioception and the motor cortex. Brain 72:35–62

    Article  PubMed  CAS  Google Scholar 

  • Gentile AM (1987) Skill Acquisition: action, movement and neuromotor processes. In: Carr JH, Sheperd RB (Hrsg) Movement science. Foundations for physical therapy in rehabilitation. Aspen Publications, Rockville

    Google Scholar 

  • Grzebellus M, Schäfer C (1998) Irradiation aus biomechanischer Sicht. Krankengymnast Zeitschrift Für Physiother 9:1489–1494

    Google Scholar 

  • Halvorson HM (1931) An experimental study of prehension in infants by means of systematic cinema records. Genet Psychol Monogr 10:279–289 (Reprinted in: Jacobs MJ (1967) Development of normal motor behavior. Am J Phys Med 46 (1): 41–51)

    Google Scholar 

  • Hammond PH (1956) The influences of prior instruction to the subject on an apparently involuntary neuromuscular response. J Physiol 132:17–18

    Google Scholar 

  • Hedin-Andèn S (2002) PNF-Grundverfahren und funktionelles Training. Urban & Fischer, Stuttgart

    Google Scholar 

  • Hislop HH (1960) Pain and exercise. Phys Ther Rev 40(2):98–106 (Reprinted in: Jacobs MJ (1967) Development of normal motor behavior. Am J Phys Med 46 (1): 41–51)

    Google Scholar 

  • Jacobs MJ (1967) Development of normal motor behavior. Am J Phys Rehabil 46(1):41–51

    CAS  Google Scholar 

  • Johansson CA, Kent BE, Shepard KF (1983) Relationship between verbal command volume and magnitude of muscle contraction. Phys Ther 63(8):1260–1265

    Article  PubMed  CAS  Google Scholar 

  • Johnson G, Saliba V (1985), nicht publiziert

    Google Scholar 

  • Kabat H (1947) Studies on neuromuscular dysfunction, XI: New principles of neuromuscular reeducation. Perm Found Med Bull 5(3):111–123

    PubMed  CAS  Google Scholar 

  • Kabat H (1961) Proprioceptive facilitation in therapeutic exercise. In: Licht S, Johnson EW (Hrsg) Therapeutic exercise, 2. Aufl. Waverly, Baltimore

    Google Scholar 

  • Klein-Vogelbach S (2000) Funktionelle Bewegungslehre. Bewegung lehren und lernen, 5. Aufl. Rehabilitation und Prävention. Springer, Berlin

    Google Scholar 

  • Knott M, Voss DE (1968) Proprioceptive neuromuscular facilitation: patterns and techniques, 2nd edn. Harper and Row, New York

    Google Scholar 

  • Kofotolis N, Vrabas IS, Vamvakoudis E, Papanikolaou A, Mandroukas K (2005) Proprioceptive neuromuscular facilitation training induced alterations in muscle fiber type and cross sectional area. Br J Sports Med 39(3):e11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee DN, Lishman JR (1975) Visual proprioceptive control of stance. J Hum Mov Stud 1:87–95

    Google Scholar 

  • Lee DN, Young DS (1985) Visual timing in interceptive actions. In: Ingle DJ et al (Hrsg) Brain mechanisms and spatial vision. Martinus Nijhoff, Dordrecht

    Google Scholar 

  • Loofbourrow GN, Gellhorn E (1948a) Proprioceptive modification of reflex patterns. J Neurophysiol 12:435–446

    Article  Google Scholar 

  • Loofbourrow GN, Gellhorn E (1948b) Proprioceptively induced reflex patterns. Am J Physiol 154:433–438

    Article  PubMed  CAS  Google Scholar 

  • Nashner LM (1977) Fixed patterns of rapid postural responses among leg muscles during stance. Exp Brain Res 30:13–24

    Article  PubMed  CAS  Google Scholar 

  • Partridge MJ (1954) Electromyographic demonstration of facilitation. Phys Ther Rev 34(5):227–233

    Article  PubMed  CAS  Google Scholar 

  • Schmidt RA, Lee TD (1999) Motor control and learning. A behavioral emphasis, Human Kinetics

    Google Scholar 

  • Sherrington C (1947) The integrative action of the nervous system, 2nd edn. Yale University Press, New Haven

    Google Scholar 

  • Umphred DA (1995) Neurological rehabilitation. Mosby, St. Louis

    Google Scholar 

  • Voss DE, Ionta M, Meyers B (1985) Proprioceptive neuromuscular facilitation: patterns and techniques, 3rd edn. Harper and Row, New York

    Google Scholar 

  • Merriam-Webster, (1984) Webster’s ninth new collegiate dictionary. Merriam-Webster, Springfield

    Google Scholar 

Further reading – General

  • Dietz V, Noth J (1978) Pre-innervation and stretch responses of triceps brachii in man falling with and without visual control. Brain Res 142:576–579

    Article  PubMed  CAS  Google Scholar 

  • Griffin JW (1974) Use of proprioceptive stimuli in therapeutic exercise. Phys Ther 54(10):1072–1079

    Article  PubMed  CAS  Google Scholar 

  • Hoessly M (1991) Use of eccentric contractions of muscle to increase range of movement in the upper neuron syndrome. Physiother Theory Pract 7:91–101

    Article  Google Scholar 

  • Hummelbein H (2000) Repetitives Ãœben in der Rehabilitation zentraler Paresen. Zeitschrift Für Physiother 6

    Google Scholar 

  • Hummelsheim H (1998) Neurologische Rehabilitation. Springer, Berlin

    Book  Google Scholar 

  • Kandel ER, Schwartz JH, Jessell TM (1995) Neurowissenschaften – Eine Einführung. Spektrum Akademischer Verlag, Heidelberg

    Google Scholar 

  • Kandel ER, Schwartz JH, Jessell TM (2000) Principles of neural science, 4th edn. McGraw-Hill, New York, St. Louis, San Fransisco

    Google Scholar 

  • Lance JW (1980) The control of muscle tone, reflexes and movement: M. Robert Wartenburg Lecture. Baillieres Clin Neurol 30:1303

    CAS  Google Scholar 

  • Lee TD, Swanson LR, Hall AL (1991) What is repeated in a repetition? Effects of practice, conditions on motor skill acquisition. Phys Ther 2:150–156

    Article  Google Scholar 

  • Payton OD, Hirt S, Newton RA (eds) (1977) Scientific basis for neuro-physiologic approaches to therapeutic exercise, an anthology. FA Davis, Philadelphia

    Google Scholar 

  • Rosenbaum DA (1991) Human motor control. Academic Press, San Diego

    Google Scholar 

  • Schmidt R (1998) Motor and action perspectives on motor behaviour: the motor action controversy. Elsevier, Amsterdam

    Google Scholar 

  • Taub E, Miller NE, Novack TA, Cook EW, Friening WC, Nepomuceno CS, Connell JS, Crago JE (1993) Technique to improve chronic motor deficit after stroke. Arch Phys Med Rehab 74(4):347–354

    CAS  Google Scholar 

  • Umphred DA (2000) Neurologische Rehabilitation. Springer, Berlin

    Book  Google Scholar 

  • Umphred DA (2001) Neurological rehabilitation. Mosby, St. Louis

    Google Scholar 

  • Wilmore JH, Costill DL (1994) Physiotherapy of sport and exercise. Human Kinetics, Champaign

    Google Scholar 

Further Reading – Stretch

  • Burg D, Szumski AJ, Struppler A, Velho F (1974) Assessment of fusimotor contribution to reflex reinforcement in humans. J Neuro Neurosurg Psychiatr 37:1012–1021

    Article  Google Scholar 

  • Cavagna GA, Dusman B, Margaria R (1968) Positive work done by a previously stretched muscle. J Appl Phys 24(1):21–32

    CAS  Google Scholar 

  • Chan CWY, Kearney RE (1982) Is the functional stretch response servo controlled or preprogrammed. Electroen Clin Neuro 53:310–324

    Article  CAS  Google Scholar 

  • Chez C, Shinoda Y (1978) Spinal mechanisms of the functional stretch reflex. Exp Brain Res 32:55–68

    Google Scholar 

Further Reading – Resistance, Irradiation and Reinforcement

  • Hellebrandt FA (1958) Application of the overload principle to muscle training in man. Arch Phys Med Rehab 37:278–283

    CAS  Google Scholar 

  • Hellebrandt FA, Houtz SJ (1956) Mechanisms of muscle training in man: experimental demonstration of the overload principle. Phys Ther 36(6):371–383

    Article  CAS  Google Scholar 

  • Hellebrandt FA, Houtz SJ (1958) Methods of muscle training: the influence of pacing. Phys Ther 38:319–322

    Article  CAS  Google Scholar 

  • Hellebrandt FA, Waterland JC (1962) Expansion of motor patterning under exercise stress. Am J Phys Med 41:56–66

    Article  PubMed  CAS  Google Scholar 

  • Moore JC (1975) Excitation overflow: an electromyographic investigation. Arch Phys Med Rehab 56:115–120

    CAS  Google Scholar 

Further Reading – Tactile Stimulus

  • Fallon JB et al (2005) Evidence for strong synaptic coupling between single tactile afferents from the sole of the foot and motoneurons supplying leg muscles. J Neurophysiol 94:3795–3804

    Article  PubMed  Google Scholar 

  • Jeka JJ (1994) Lackner JR (1994) Fingertip contact influences human postural control. Exp Brain Res 100:495–502

    Article  PubMed  CAS  Google Scholar 

Further Reading – Verbal Stimulus

  • Sadowski J, Mastalerz A, Niznikowski WW, Biegajlo M, Kulik M (2011) The effects of different types of verbal feedback on learning a complex movement task. Pol J Sports Tour 18:308–310

    Article  Google Scholar 

Further Reading – Visual stimulus

  • Mohapatra S, Krishnan V, Aruin AS (2012) The effect of decreased visual acuity on control of posture. Clin Neurophysiol 123(1):173–182

    Article  PubMed  Google Scholar 

  • Park SE, Oh DS, Moon SH (2016) Effects of oculo-motor exercise, functional electric stimulation and proprioceptive neuromuscular stimulation on visual perception of spatial neglect patients. J Phys Ther Sci 28:1111–1115

    Google Scholar 

  • Prodoehl J, Vaillancourt DE (2010) Effects of visual gain on force control at the elbow and ankle. Exp Brain Res 200(1):67–79

    Article  PubMed  Google Scholar 

  • Ramachandran VS, Altschuler EL (2009) The use of visual feedback, in particular mirror visual feedback, in restoring brain function. Brain 132:1693–1710

    Article  PubMed  CAS  Google Scholar 

Further Reading – Resistance

  • Gabriel DA, Kamen G, Frost G (2006) Neural adaptations to resistive exercise, mechanisms and recommendations for training practices. Sports Med 36(2):183–189

    Article  Google Scholar 

Further Reading – Approximation

  • Fitts RH, Riley DR, Widrick JJ (2001) Functional and structural adaptations of skeletal muscle to microgravity. J Exp Biol 204(Pt 18):3201–3208

    Article  PubMed  CAS  Google Scholar 

  • Horstmann GA, Dietz V (1990) A basic posture control mechanism: the stabilization of the centre of gravity. Electroencephalogr Clin Neurophysiol 76(2):165–176

    Article  PubMed  CAS  Google Scholar 

  • Mahani MK, Karimloo M, Amirsalari S (2010) Effects of modified Adeli suit therapy on improvement of gross motor function in children with cerebral palsy. Cereb Palsy Hong Kong J Occup Ther 21(1):9–14

    Article  Google Scholar 

  • Ratliffe KT, Alba BM, Hallum A, Jewell MJ (1987) Effects of approximation on postural sway in healthy subjects. Phys Ther 67(4):502–506

    Article  PubMed  CAS  Google Scholar 

  • Shin WS, Lee SW (2014) Effect of gait training with additional weight on balance and gait in stroke patients. Phys Ther Rehab Sci 3(1):55–62

    Article  Google Scholar 

  • Sylos-Labini F, Lacquaniti F, Ivanenko YP (2014) Human locomotion under reduced gravity conditions: biomechanical and neurophysiological considerations. Biomed Res Int. https://doi.org/10.1155/2014/547242

  • Yigiter K, Sener G, Erbahceci F, Bayar K, Ãœlger ÖG, Akodogan S (2002) A comparison of traditional prosthetic training versus PNF resistive gait training with trans-femoral amputees. Prosthet Orthot Int 26(3):213–217

    Article  PubMed  CAS  Google Scholar 

Further Reading – Irradiation

  • Abreu R, Lopes AA, Sousa AS, Pereira S, Castro MP (2015) Force irradiation effects during upper limb diagonal exercises on contralateral muscle activation. J Electromyogr Kinesiology 25(2):292–297

    Article  Google Scholar 

  • Arai M et al (2001) Effects of the use of cross-education to the affected side through various resistive exercises of the sound side and settings of the length of the affected muscles. Hiroshima J Med Sci 3:65–73

    Google Scholar 

  • Carroll GTJ, Herbert RD, Munn J, Lee M, Gandavia SC (2006) Contralateral effects of unilateral strength training. Evidence and possible mechanisms. J Appl Physiol 101:1514–1522

    Article  PubMed  Google Scholar 

  • Chiou SY, Wang RY, Liao KK, Yang YR (2016) Facilitation of the lesioned motor cortex during tonic contraction of the unaffected limb corresponds to motor status after stroke. JNPT 40:15–21

    PubMed  Google Scholar 

  • De Oliviera KCR et al (2018) Overflow using proprioceptive neuromuscular facilitation on post-stroke hemiplegics: a preliminary study. J Bodyw Mov Ther. https://doi.org/10.1016/j,jbmt.2018.02.011

  • Gontijo LB, Pererla PD, Neves CDC, Santos AP, Castro Dutra Machado D, Vale Bastos VH (2012) Evaluation of strength and irradiated movement pattern resulting from trunk motions of the proprioceptive neuromuscular facilitation. Rehabil Res Pract. https://doi.org/10.1155/281937

    Article  PubMed  PubMed Central  Google Scholar 

  • Hendy AM, Spittle M, Kidgell DJ (2012) Cross education and immobilisation: mechanisms and implication for injury rehabilitation. J Sci Med Sport 15(2):94–101

    Article  PubMed  Google Scholar 

  • Hwang YI, Park DJ (2017) Comparison of abdominal muscle activity during abdominal drawing-in maneuver combined with irradiation variations. J Exerc Rehabil 13(3):335–339

    Article  PubMed  PubMed Central  Google Scholar 

  • Kofotolis ND, Kellis E (2007) Cross-training effects of a Proprioceptive neuromuscular facilitation exercise programme on knee musculature. Phys Ther Sport 8:109–116

    Article  Google Scholar 

  • Lee M, Gandevia SC, Carroll TJ (2009) Unilateral strength training increases voluntary activation of the opposite untrained limb. Neurophysiol Clin 120(4):802–808

    Article  Google Scholar 

  • Lee M, Caroll TJ (2007) Cross Education Possible Mechanisms for the Contralateral Effects of Unilateral Resistance Training. Sports Med 37(1):1–14

    Article  PubMed  Google Scholar 

  • Mastalerz A, Wozniak A, Urbaniak C, Lutoslawska G (2010) Contralateral effects after power training in isolated muscles in women. Acta Bioeng Biomech 12(2):1–7

    Google Scholar 

  • Munn J, Herbert RD, Gandevia SC (2004) Contralateral effects of unilateral resistance training a meta analysis. Jappl Physiol 96:1861–1866

    Article  CAS  Google Scholar 

  • Reznik JE, Biros E, Bartur G (2015) An electromyographic investigation of the pattern of overflow facilitated by manual resistive proprioceptive neuromuscular facilitation in young healthy individuals: a preliminary study. Physiother Theory Pract 31(8):582–586

    Article  PubMed  CAS  Google Scholar 

  • Sato H, Maruyama H (2009) The effects of indirect treatment of PNF. J Phys Ther Sci 21:189–193

    Article  Google Scholar 

  • Shima N et al (2002) Cross education of muscular strength during unilateral resistance training and detraining. Eur Jappl Physiol 86(4):287–294

    Article  Google Scholar 

  • Shiratani T, Arai M, Kuruma H, Masumoto K (2017) The effects of opposite-directional static contraction of the muscles of the right upper extremity on the ipsilateral right soleus H-reflex. J Bodyw Mov Ther 21(3):528–533

    Article  PubMed  Google Scholar 

  • Zhou S (2003) Cross education and neuromuscular adaptations during early stage of strength training. J Exerc Sci Fit 1(1):54–60

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominiek Beckers .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer-Verlag GmbH, DE, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Beckers, D., Buck, M. (2021). PNF Basic Principles and Procedures for Facilitation. In: PNF in Practice. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-61818-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-61818-9_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-61817-2

  • Online ISBN: 978-3-662-61818-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics