Skip to main content

Adaptivity at the Physical Layer

  • Chapter
  • First Online:
Cognitive Underwater Acoustic Networking Techniques

Abstract

What can be adjusted in-mission to maintain stable communication and how can it be done? This chapter first lists the important parameters. For example, adjusting the transmission power based on distance, or varying the data rate vs required robustness. It is explained that the modem settings can be optimized based on user/scenario requirements and application settings, as well as environmental conditions. For the latter, we can distinguish between physical descriptors and system descriptors. For interoperability, it is important that modem settings remain synchronized within the network. Several approaches are discussed. Finally, it is investigated how decisions for adaptions can be made. Often the decision involves switching to pre-defined modes (profiles) based on certain criteria, but in-mission optimizations have also been reported.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Link adaptation, wikipedia page. https://en.wikipedia.org/wiki/Link_adaptation. Accessed 22 March 2019

  2. Abdallah S, Martin M, Chadi S (2009) Broadband access networks. Springer, Berlin

    Google Scholar 

  3. Schmidt H, Schneider T (2016) Acoustic communication and navigation in the new arctic, a model case for environmental adaptation. In: 2016 IEEE third underwater communications and networking conference (UComms), pp 1–4. IEEE

    Google Scholar 

  4. Dahl PH, Miller JH, Cato DH, Andrew RK (2007) Underwater ambient noise. Acoust Today 3(1):23–33

    Google Scholar 

  5. Underwater acoustics — Terminology. ISO 18405:2017(E), International Organization for Standardization, Geneva, CH, 2017

    Google Scholar 

  6. Rice JA, McDonald VK (1999) Adaptive modulation for undersea acoustic telemetry. Sea Technol 40(5):29–36

    Google Scholar 

  7. Qarabaqi P, Stojanovic M (2011) Adaptive power control for underwater acoustic communications. In: Proceedings OCEANS 2011 IEEE - Spain, pp 1–7

    Google Scholar 

  8. Jornet JM, Stojanovic M, Zorzi M (2010) On joint frequency and power allocation in a cross-layer protocol for underwater acoustic networks. IEEE J Ocean Eng 35(4):936–947

    Google Scholar 

  9. Yishan S, Zhu Y, Mo H, Cui J-H, Jin Z (2015) A joint power control and rate adaptation MAC protocol for underwater sensor networks. Ad Hoc Netw 26:36–49

    Article  Google Scholar 

  10. Bouabdallah F, Zidi C, Boutaba R (2017) Joint routing and energy management in underwater acoustic sensor networks. IEEE Trans Netw Ser Manag 14(2):456–471

    Article  Google Scholar 

  11. Bit rate (2018) https://en.wikipedia.org/wiki/Bit_rate. Accessed 14 March 2018

  12. van Walree P, Green D, Otnes R (2018) Ambiguities in underwater acoustic communications terminology and measurement procedures. In: 2018 fourth underwater communications and networking conference (UComms), pp 1–4

    Google Scholar 

  13. Nissen I (2005) Pilot-based OFDM-systems for underwater communication applications. In: Proceedings conference on new concepts for harbour protection, littoral security and underwater acoustic communications, Istanbul, Turkey (TICA)

    Google Scholar 

  14. Tomasi B, Toni L, Casari P, Rossi L, Zorzi M (2010) Performance study of variable-rate modulation for underwater communications based on experimental data. In: Proceedings of the OCEANS 2010 MTS/IEEE SEATTLE, pp 1–8

    Google Scholar 

  15. Radosevic A, Ahmed R, Duman TM, Proakis JG, Stojanovic M (2014) Adaptive OFDM modulation for underwater acoustic communications: design considerations and experimental results. IEEE J Ocean Eng 39(2):357–370

    Article  Google Scholar 

  16. Wan L, Zhou H, Xu X, Huang Y, Zhou S, Shi Z, Cui J (2015) Adaptive modulation and coding for underwater acoustic OFDM. IEEE J Ocean Eng 40(2):327–336

    Article  Google Scholar 

  17. Demirors E, Sklivanitis G, Santagati GE, Melodia T, Batalama SN (2014) Design of a software-defined underwater acoustic modem with real-time physical layer adaptation capabilities. In: Proceedings of the international conference on underwater networks & systems, p 25. ACM

    Google Scholar 

  18. Mani S, Duman TM, Hursky P (2008) Adaptive coding-modulation for shallow-water UWA communications. J Acoust Soc Amer 123(5):3749

    Article  ADS  Google Scholar 

  19. Pelekanakis K, Cazzanti L (2018) On adaptive modulation for low SNR underwater acoustic communications. In: OCEANS 2018, SC, USA, November 2018

    Google Scholar 

  20. Lingjuan W, Trezzo J, Mirza D, Roberts P, Jaffe J, Wang Y, Kastner R (2012) Designing an adaptive acoustic modem for underwater sensor networks. IEEE Embed Syst Lett 4(1):1–4

    Article  Google Scholar 

  21. Gannon A, Balakrishnan S, Sklivanitis G, Pados DA, Batalama SN (2018) Short data record filtering for adaptive underwater acoustic communications. In: 2018 IEEE 10th Sensor array and multichannel signal processing workshop (SAM), pp 316–320, July 2018

    Google Scholar 

  22. Demirors E, Sklivanitis G, Santagati GE, Melodia T, Batalama SN (2018) A high-rate software-defined underwater acoustic modem with real-time adaptation capabilities. IEEE Access 6:18602–18615

    Article  Google Scholar 

  23. Tomasi B, Munaretto D, Preisig JC, Zorzi M (2015) Redundancy allocation in time-varying channels with long propagation delays. Ad Hoc Netw 34:31–41

    Article  Google Scholar 

  24. Benson A, Proakis J, Stojanovic M (2000) Towards robust adaptive acoustic communications. In: OCEANS 2000 MTS/IEEE conference and exhibition, vol 2, pp 1243–1249. IEEE

    Google Scholar 

  25. Petroccia R, Pelekanakis K, Alves J, Fioravanti S, Blouin S, Pecknold S (2018) An adaptive cross-layer routing protocol for underwater acoustic networks. In: 2018 fourth underwater communications and networking conference (UComms), pp 1–5. IEEE

    Google Scholar 

  26. Pottier A, Socheleau F-X, Laot C (2017) Robust noncooperative spectrum sharing game in underwater acoustic interference channels. IEEE J Ocean Eng 42(4):1019–1034

    Article  Google Scholar 

  27. Shankar S, Chitre M (2013) Tuning an underwater communication link. In: 2013 MTS/IEEE OCEANS - Bergen, pp 1–9

    Google Scholar 

  28. Freitag L, Johnson M, Stojanovic M (1997) Efficient equalizer update algorithms for acoustic communication channels of varying complexity. In: Oceans ’97. MTS/IEEE conference proceedings, vol 1, pp 580–585

    Google Scholar 

  29. Song A, Stojanovic M, Chitre M (2019) Underwater acoustic communications: where we stand and what is next? (editorial). IEEE J Ocean Eng 44(1):1–6

    Article  Google Scholar 

  30. Berezdivin R, Breinig R, Topp R (2002) Next-generation wireless communications concepts and technologies. IEEE Commun Mag 40(3):108–116

    Article  Google Scholar 

  31. Malik A, Qadir J, Ahmad B, Alvin Yau K-L, Ullah U (2015) QoS in IEEE 802.11-based wireless networks: a contemporary review. J Netw Comput Appl 55:24–46

    Google Scholar 

  32. Cheruku DR (2010) Satellite communication. IK International Pvt Ltd

    Google Scholar 

  33. Abdat M, Al Kachouh Z, Bellanger MG (1998) Transmission error detection and concealment in JPEG images. Signal Process Image Commun 13(1):45–64

    Article  Google Scholar 

  34. Minoru E (2005) Next generation mobile systems: 3G and beyond. Wiley, New York

    Google Scholar 

  35. Tozer EPJ (2012) Broadcast engineer’s reference book. Taylor & Francis, Abingdon-on-Thames

    Book  Google Scholar 

  36. Blom KCH, Dol HS (2018) QoS-enabled underwater acoustic communications. In: OCEANS 2018 MTS/IEEE charleston, pp 1–7. IEEE

    Google Scholar 

  37. van Walree P (2013) On the definition of receiver output snr and the probability of bit error. In: 2013 MTS/IEEE OCEANS-Bergen, pp 1–9. IEEE

    Google Scholar 

  38. Heidemann J, Stojanovic M, Zorzi M (2012) Underwater sensor networks: applications, advances and challenges. Philos Trans R Soc A: Math Phys Eng Sci 370(1958):158–175

    Article  ADS  Google Scholar 

  39. Cioffi JM, Dudevoir GP, Eyuboglu MV, Forney GD (1995) MMSE decision-feedback equalizers and coding–Part I: equalization results. IEEE Trans Commun 43(10):2582–2594

    Article  MATH  Google Scholar 

  40. Matzner R, Englberger F (1994) An SNR estimation algorithm using fourth-order moments. In: Proceedings of 1994 IEEE international symposium on information theory, p 119. IEEE

    Google Scholar 

  41. Berning F (2019) Thoughts regarding adaptive modulation profile switching for SALSA. SALSA presentation

    Google Scholar 

  42. System and method for measuring channel quality information. US Patent 6108374 (filed in 1997, granted in 2000)

    Google Scholar 

  43. Hayes JF (1968) Adaptive feedback communications. IEEE Trans Commun Technol 16(1):29–34

    Article  Google Scholar 

  44. Chua S-G, Goldsmith AJ (1997) Variable-rate variable-power MQAM for fading channels. IEEE Trans Comm 45(10):1218–1230

    Article  Google Scholar 

  45. Ahmed R, Stojanovic M (2017) Joint power and rate control for packet coding over fading channels. IEEE J Ocean Eng 42(3):697–710

    Article  Google Scholar 

  46. Sadeghi M, Elamassie M, Uysal M (2017) Adaptive OFDM-based acoustic underwater transmission: system design and experimental verification. In: 2017 IEEE international black sea conference on communications and networking (BlackSeaCom), pp 1–5

    Google Scholar 

  47. Nanda S, Balachandran K, Kumar S (2000) Adaptation techniques in wireless packet data services. IEEE Commun Mag 38(1):54–64

    Article  Google Scholar 

  48. Kuai X, Sun H, Qi J, Cheng E, Xiao-ka X, Guo Y, Chen Y (2014) CSI feedback-based CS for underwater acoustic adaptive modulation OFDM system with channel prediction. China Ocean Eng 28(3):391

    Article  ADS  Google Scholar 

  49. Gang Q, Liu L, Ma L, Yin Y (2019) Adaptive downlink ofdma system with low-overhead and limited feedback in time-varying underwater acoustic channel. IEEE Access 7:12729–12741

    Google Scholar 

  50. Dol H, Colin M, van Walree P, Otnes R (2018) Field experiments with a dual-frequency-band underwater acoustic network. In: 2018 fourth underwater communications and networking conference (UComms), pp 1–5. IEEE

    Google Scholar 

  51. Nissen I (2015) Burst communication-a solution for the underwater information management. Hydroacoustics 18:113–126

    Google Scholar 

  52. Xing Z, Zhou J, Ye J, Yan J, Zou L, Wan Q (2014) Automatic modulation recognition of PSK signals using nonuniform compressive samples based on high order statistics. In: 2014 IEEE international conference on communication problem-solving, pp 611–614. IEEE

    Google Scholar 

  53. Thakur PS, Madan S, Madan M (2015) Trends in automatic modulation classification for advanced data communication networks. Int J Adv Res Comput Eng Technol (IJARCET) 4:496–507

    Google Scholar 

  54. Dobre OA, Abdi A, Bar-Ness Y, Wei S (2007) Survey of automatic modulation classification techniques: classical approaches and new trends. IET Commun 1(2):137–156

    Article  Google Scholar 

  55. Hazza A, Shoaib M, Alshebeili SA, Fahad A (2013) An overview of feature-based methods for digital modulation classification. In: 2013 1st international conference on communications, signal processing, and their applications (ICCSPA), pp 1–6. IEEE

    Google Scholar 

  56. Gao F, Zhang K (2015) Enhanced multi-parameter cognitive architecture for future wireless communications. IEEE Commun Mag 53(7):86–92

    Article  Google Scholar 

  57. Kochanska I (2013) Considerations of adaptive digital communications in underwater acoustic channel. Hydroacoustics J

    Google Scholar 

  58. Proakis MSJG (2002) Communication systems engineering, 2nd edn. Pearson, London

    MATH  Google Scholar 

  59. Pelekanakis K, Cazzanti L, Zappa G, Alves J (2016) Decision tree-based adaptive modulation for underwater acoustic communications. In: 2016 IEEE third underwater communications and networking conference (UComms), pp 1–5

    Google Scholar 

  60. Anjangi P, Chitre M (2018) Model-based data-driven learning algorithm for tuning an underwater acoustic link. In: 2018 fourth underwater communications and networking conference (UComms), pp 1–5

    Google Scholar 

  61. Wang C, Wang Z, Sun W, Fuhrmann DR (2018) Reinforcement learning-based adaptive transmission in time-varying underwater acoustic channels. IEEE Access 6:2541–2558

    Article  Google Scholar 

  62. Carrascosa PC, Stojanovic M (2008) Adaptive MIMO detection of OFDM signals in an underwater acoustic channel. IEEE

    Google Scholar 

  63. Patricia Ceballos Carrascosa and Milica Stojanovic (2010) Adaptive channel estimation and data detection for underwater acoustic mimo-ofdm systems. IEEE J Ocean Eng 35(3):635–646

    Article  Google Scholar 

  64. Haykin S et al (2005) Cognitive radio: brain-empowered wireless communications. IEEE J Sel Areas Commun 23(2):201–220

    Article  Google Scholar 

  65. Qiao G, Liu L, Ma L, Yin Y (2019) Adaptive downlink ofdma system with low-overhead and limited feedback in time-varying underwater acoustic channel. IEEE Access

    Google Scholar 

  66. Tiansi H, Fei Y (2010) Qelar: a machine-learning-based adaptive routing protocol for energy-efficient and lifetime-extended underwater sensor networks. IEEE Trans Mob Comput 9(6):796–809

    Article  Google Scholar 

  67. Anjangi P, Chitre M (2018) Model-based data-driven learning algorithm for tuning an underwater acoustic link. In: 2018 fourth underwater communications and networking conference (UComms), pp 1–5. IEEE

    Google Scholar 

  68. Haykin S, Huber K, Chen Z (2004) Bayesian sequential state estimation for mimo wireless communications. Proc IEEE 92(3):439–454

    Article  Google Scholar 

  69. Ha C-B, You Y-H, Song H-K (2019) Machine learning model for adaptive modulation of multi-stream in mimo-ofdm system. IEEE Access 7:5141–5152

    Article  Google Scholar 

  70. Otnes R, van Walree P, Buen H, Song H (2015) Underwater acoustic network simulation with lookup tables from physical-layer replay. IEEE J Ocean Eng 40(4):822–840

    Article  Google Scholar 

  71. Xie P, Cui J-H (2006) Exploring random access and handshaking techniques in large-scale underwater wireless acoustic sensor networks. In: OCEANS 2006, pp 1–6. IEEE

    Google Scholar 

  72. Otnes R, Asterjadhi A, Casari P, Goetz M, Husøy T, Nissen I, Rimstad K, van Walree P, Zorzi M (2012) Underwater acoustic networking techniques. Springer Science & Business Media, Berlin

    Google Scholar 

  73. Zhang W, Qin Z, Xin J, Wang L, Zhu M, Sun L, Shu L (2014) Upmac: a localized load-adaptive mac protocol for underwater acoustic networks. In: 2014 23rd international conference on computer communication and networks (ICCCN), pp 1–8. IEEE

    Google Scholar 

  74. Guo X, Frater MR, Ryan MJ (2009) Design of a propagation-delay-tolerant mac protocol for underwater acoustic sensor networks. IEEE J Ocean Eng 34(2):170–180

    Article  Google Scholar 

  75. Shahabudeen S, Chitre M, Potter J, Motani M (2009) Multi-mode adaptive mac protocol suite and standardization proposal for heterogeneous underwater acoustic networks. In: Proceeding underwater acoustic measurement, pp 1–8

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dol, H. et al. (2020). Adaptivity at the Physical Layer. In: Sotnik, D., Goetz, M., Nissen, I. (eds) Cognitive Underwater Acoustic Networking Techniques. SpringerBriefs in Electrical and Computer Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-61658-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-61658-1_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-61657-4

  • Online ISBN: 978-3-662-61658-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics