Skip to main content

Introduction

  • Chapter
  • First Online:
Process and Plant Safety
  • 543 Accesses

Abstract

The production of the process industry often involves hazards. Their nature can be both physical and chemical. Physical hazards derive from operating conditions, which may be extreme, such as very low or very high temperatures and pressures. Chemical hazards are those associated with the materials present in the process, which can be toxic, flammable, explosible, or release energy due to spontaneous reactions. Indeed, it is the necessity to put the substances into a reactive state in order to enable one to produce the desired products that may lead to hazards.

Whoever demands absolute safety, ignores the law of life.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The term “process industry” comprises firms from the chemical, petrochemical, pharmaceutical and food industries as well as the production of steel, cement and the like.

  2. 2.

    “Without apparent reason” from the Latin word sponte “from its own accord”.

  3. 3.

    State of safety technology: the state of development of advanced processes, installations and procedures that permit one to take for granted the practical aptitude of a measure for avoiding accidents or limiting their consequences. When determining the state of safety technology comparable processes, installations and procedures have to be considered that have been successfully applied in practice [4] (translated by the author).

  4. 4.

    Accident: an event such as an emission, a fire or an explosion of major impact that leads to a disturbance of the specified operation* in a site or a plant subject to this ordinance (Author’s remark: this refers to the Major Accident Ordinance [4]) that leads immediately or at a later stage to a serious hazard or material damage within or outside the site involving one or several hazardous substances as listed in annex VI part 1 para I no. 4.

    *Specified operation is the operation for which a plant is designed and appropriate. Operating regimes not covered by the valid license, posterior impositions or applicable legal requirements do not belong to the specified operation. The specified operation comprises the

    • normal operation including necessary human interventions such as the taking of samples and including the storage with filling, transfer and refilling procedures,

    • plant commissioning and its start-up and shut-down,

    • trial operation,

    • maintenance, inspection, repair and cleaning work as well as

    • periods of temporary stand-still [8] (translated by the author).

  5. 5.

    In the field of nuclear engineering this is referred to as “design-basis accident”.

  6. 6.

    Based on probability considerations derived from the Latin word probabilis: assumable, likely, credible.

References

  1. Mannan S (ed) (2005) Lees’ loss prevention in the process industries, hazard identification, assessment and control, 3rd edn. Elsevier, Amsterdam

    Google Scholar 

  2. SFK (2002) Störfallkommission beim Bundesminister für Umwelt, Naturschutz und Reaktorsicherheit (Hrsg.), Schritte zur Ermittlung des Standes der Sicherheitstechnik, SFK-GS-33, Januar 2002

    Google Scholar 

  3. SFK (1995) Störfallkommission beim Bundesminister für Umwelt, Naturschutz und Reaktorsicherheit (Hrsg.): Leitfaden Anlagensicherheit, SFK-GS-06, November 1995

    Google Scholar 

  4. Zwölfte Verordnung zur Durchführung des Bundes-Immissionsschutzgesetzes (Störfall-Verordnung – 12. BImSchV), “Störfall-Verordnung in der Fassung der Bekanntmachung vom 15. März 2017 (BGBl. I S. 483), die zuletzt durch Artikel 1a der Verordnung vom 8. Dezember 2017 (BGBl. I S. 3882) geändert worden ist”, Stand: Neugefasst durch Bek. v. 15.3.2017 I 483; Berichtigung vom 2.10.2017 I 3527 ist berücksichtigt, Stand: Zuletzt geändert durch Art. 1a V v. 8.12.2017 I 3882 (German implementation of the DIRECTIVE 2012/18/EU OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 4 July 2012 on the control of major-accident hazards involving dangerous substances, amending and subsequently repealing Council Directive 96/82/EC/, Seveso III-Directive)

    Google Scholar 

  5. Verordnung über Sicherheit und Gesundheitsschutz bei der Verwendung von Arbeitsmitteln (Betriebssicherheitsverordnung -BetrSichV), “Betriebssicherheitsverordnung vom 3. Februar 2015 (BGBl. I S. 49), die zuletzt durch Artikel 1 der Verordnungvom 30. April 2019 (BGBl. I S. 554) geändert worden ist”

    Google Scholar 

  6. Gesetz über die Bereitstellung von Produkten auf dem Markt (Produktsicherheitsgesetz –ProdSG),“Produktsicherheitsgesetz vom 8. November 2011 (BGBl. I S. 2178, 2179; 2012 I S. 131), das durch Artikel 435 der Verordnung vom 31. August 2015 (BGBl. I S. 1474) geändert worden ist”

    Google Scholar 

  7. Gesetz zum Schutz vor schädlichen Umwelteinwirkungen durch Luftverunreinigungen, Geräusche, Erschütterungen und ähnliche Vorgänge (Bundes-Immissionsschutzgesetz – BImSchG), “Bundes-Immissionsschutzgesetz in der Fassung der Bekanntmachung vom 17. Mai 2013 (BGBl. I S. 1274), das zuletzt durch Artikel 1 des Gesetzes vom 8. April 2019 (BGBl. I S. 432) geändert worden ist” (Immission Act)

    Google Scholar 

  8. StörfallVwV—Erste Allgemeine Verwaltungsvorschrift zur Störfall-Verordnung vom 20. September 1993 (GMBl. S. 582, ber. GMBl. 1994 S. 820)

    Google Scholar 

  9. http://www.aria.developpement-durable.gouv.fr/

  10. Functional safety – Safety instrumented systems for the process industry sector – Part 1: Framework, definitions, system, hardware and application programming Requirements (IEC 61511-1:2016 + COR1:2016 + A1:2017); German version EN 61511-1:2017 + A1:2017

    Google Scholar 

  11. DIN EN 61511-2:2019-02;VDE 0810-2:2019-02, Functional safety – Safety instrumented systems for the process industry sector – Part 2: Guidelines for the application of IEC 61511-1 (IEC 61511-2:2016); German version EN 61511-2:2017

    Google Scholar 

  12. DIN EN 61511-3:2019-02;VDE 0810-3:2019-02, Functional safety – Safety instrumented systems for the process industry sector – Part 3: Guidance for the determination of the required safety integrity levels (IEC 61511-3:2016); German version EN 61511-3:2017

    Google Scholar 

  13. Guidance on SAFETY PERFORMANCE INDICATORS—Guidance for Industry, Public Authorities and Communities for developing SPI Programmes related to Chemical Accident Prevention, Preparedness and Response, (Interim Publication scheduled to be tested in 2003–2004 and revised in 2005), OECD Environment, Health and Safety Publications, Series on Chemical Accidents, No. 11

    Google Scholar 

  14. Sugden C, Birkbeck D, Gadd S Major hazards industry performance indicators scoping study, HSL/2007/31

    Google Scholar 

  15. https://www.infosis.uba.de/index.php/de/zema/index.html

  16. Lipka B (2009) Deutsche Gesetzliche Unfallversicherung (DGUV), personal communication October 2009

    Google Scholar 

  17. Morgan GM, Henrion M (1990) Uncertainty—a guide to dealing with uncertainty in quantitative risk and policy analysis. Cambridge University Press, New York

    Book  Google Scholar 

  18. Balakrishnan S, Georgopoulos P, Banerjee I, Ierapetriou M (2002) Uncertainty considerations for describing complex reaction systems. AIChE J 48(12):2875–2889

    Article  Google Scholar 

  19. Watanabe N, Nishimura Y, Matsubara M (1973) Optimal design of chemical processes involving parameter uncertainty. Chem Eng Sci 28:905–913

    Article  Google Scholar 

  20. Nishida N, Ichikawa A, Tazaki E (1974) Synthesis of optimal process systems with uncertainty. Ind Eng Chem Process Des Dev 13:209–214

    Article  Google Scholar 

  21. Knetsch T, Hauptmanns U (2005) Integration of stochastic effects and data uncertainties into the design of process equipment. Risk Anal 25(1):189–198

    Article  Google Scholar 

  22. Hauptmanns U (1997) Uncertainty and the calculation of safety-related parameters for chemical reactions. J Loss Prev Process Ind 10(4):243–247

    Article  Google Scholar 

  23. Hauptmanns U (2007) Boundary conditions for developing a safety concept for an exothermal reaction. J Hazard Mater 148:144–150

    Article  Google Scholar 

  24. Reagan MT, Naim HN, Pébay PP, Knio OM, Ghanem RG (2005) Quantifying uncertainty in chemical systems modelling. Int J Chem Kinet 37(6):368–382

    Article  Google Scholar 

  25. Reagan MT, Naim HN, Debusschere BJ, Le Maître OP, Knio OM, Ghanem RG (2004) Spectral stochastic uncertainty quantification in chemical systems. Combust Theory Model 8(3):607–632

    Article  Google Scholar 

  26. Hauptmanns U (2008) Comparative assessment of the dynamic behaviour of an exothermal chemical reaction including data uncertainties. Chem Eng J 140:278–286

    Article  Google Scholar 

  27. Hauptmanns U (2012) Do we really want to calculate the wrong problem as exactly as possible? The relevance of initial and boundary conditions in treating the consequences of accidents. In: Schmidt J (ed) Safety technology—applying computational fluid dynamics. Wiley-VCH, Weinheim

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Hauptmanns .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hauptmanns, U. (2020). Introduction. In: Process and Plant Safety. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-61484-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-61484-6_1

  • Published:

  • Publisher Name: Springer Vieweg, Berlin, Heidelberg

  • Print ISBN: 978-3-662-61483-9

  • Online ISBN: 978-3-662-61484-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics