Skip to main content

Wissenserwerb

  • Chapter
  • First Online:
Pädagogische Psychologie

Zusammenfassung

Der Erwerb von Wissen („knowledge acquisition“) ist wohl die wichtigste Zieldimension der meisten Bildungsprozesse. Wird im Kontext von Schule, Hochschule und Weiterbildung der Begriff „Lernen“ gebraucht, so bezieht er sich typischerweise auf Wissenserwerb. Insofern wird im Folgenden Lernen synonym mit Wissenserwerb gebraucht. Zu gelungenem Wissenserwerb trägt eine Vielzahl von Faktoren bei. Dieser Beitrag konzentriert sich auf das Was und Wie des Wissenserwerbs aus kognitiver Perspektive. Dabei werden nur die proximal am Wissenserwerb beteiligten Faktoren und Prozesse betrachtet. Es wird zunächst die Frage geklärt, welche Wissensarten in diesem Zusammenhang von besonderer Bedeutung sind. Anschließend werden drei grundlegende theoretische Perspektiven rekonstruiert und deren Implikationen für die Analyse und Förderung des Wissenserwerbs diskutiert. Danach werden wichtige Lernarten besprochen. Abschließend wird noch kurz das Verhältnis zwischen Lernprozessen und Instruktion (Unterricht, instruktionales Design von Lernmaterial und Lernumgebungen) erörtert.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • Aamodt, A., & Nygård, M. (1995). Different roles and mutual dependencies of data, information, and knowledge – An AI perspective on their integration. Data & Knowledge Engineering, 16, 191–222.

    Google Scholar 

  • Ainsworth, S. E., & Loizou, A. T. (2003). The effects of self-explaining when learning with text or diagrams. Cognitive Science, 27, 669–681.

    Google Scholar 

  • Aleven, V., & Koedinger, K. R. (2002). An effective meta-cognitive strategy: Learning by doing and explaining with a computer-based Cognitive Tutor. Cognitive Science, 26, 147–179.

    Google Scholar 

  • Alexander, P. A. (1997). Mapping the multidimensional nature of domain learning: The interplay of cognitive, motivational, and strategic forces. Advances in Motivation and Achievement, 10, 213–250.

    Google Scholar 

  • Alexander, P. A., Schallert, D. L., & Hare, V. C. (1991). Coming to terms: How researchers in learning and literacy talk about knowledge. Review of Educational Research, 61, 315–343.

    Google Scholar 

  • Alfieri, L., Brooks, P. J., Aldrich, N. J., & Tenenbaum, H. R. (2011). Does discovery-based instruction enhance learning? The Journal of Educational Psychology, 103, 1–18.

    Google Scholar 

  • Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S., Lebiere, C., & Qin, Y. (2004). An integrated theory of the mind. Psychological Review, 111, 1036–1060.

    Google Scholar 

  • Aronson, E., Blaney, N., Sikes, J., Stephan, G., & Snapp, M. (1978). The jigsaw classroom. Beverly Hills: Sage.

    Google Scholar 

  • Atkinson, R. K., Renkl, A., & Merrill, M. M. (2003). Transitioning from studying examples to solving problems: Combining fading with prompting fosters learning. Journal of Educational Psychology, 95, 774–783.

    Google Scholar 

  • Baddeley, A. (2007). Working memory, thought, and action. New York: Oxford University Press.

    Google Scholar 

  • Bandura, A. (1986). Social foundations of thought and action: A social cognitive. Englewood Cliffs: Prentice Hall.

    Google Scholar 

  • Barab, S., Ingram-Goble, A., Gresalfi, M., Arici, A., Siyahhan, S., Dodge, T., & Hay, K. (2008). Conceptual play spaces and the quest Atlantis project. In G. Kanselaar, V. Jonker, P. A. Kirschner, & F. J. Prins (Hrsg.), Proceedings of the 8th International Conference of the Learning Sciences 2008. Utrecht: ICLS.

    Google Scholar 

  • Barzilai, S., Zohar, A. R., & Mor-Hagani, S. (2018). Promoting integration of multiple texts: A review of instructional approaches and practices. Educational Psychology Review, 30, 1–27.

    Google Scholar 

  • Berthold, K., & Renkl, A. (2009). Instructional aids to support a conceptual understanding of multiple representations. Journal of Educational Psychology, 101, 70–87.

    Google Scholar 

  • Britt, M. A., & Rouet, J.-F. (2012). Learning with multiple documents: Component skills and their acquisition. In J. R. Kirby & M. J. Lawson (Hrsg.), Enhancing the quality of learning: Dispositions, instruction, and learning processes (S. 276–314). New York: Cambridge University Press.

    Google Scholar 

  • Brown, A. L., & Palincsar, A. S. (1989). Guided, cooperative learning and individual knowledge acquisition. In L. B. Resnick (Hrsg.), Knowing, learning, and instruction (S. 393–451). Hillsdale: Erlbaum.

    Google Scholar 

  • Bruner, J. S. (1961). The act of discovery. Harvard Educational Review, 31, 21–32.

    Google Scholar 

  • Chi, M. T. H. (1978). Knowledge structures and memory development. In R. S. Siegler (Hrsg.), Children’s thinking: What develops? (S. 73–96). Hillsdale: Erlbaum.

    Google Scholar 

  • Chi, M. T. H. (2000). Self-explaining expository texts: The dual processes of generating inferences and repairing mental models. In R. Glaser (Hrsg.), Advances in instructional psychology (S. 161–238). Hillsdale: Erlbaum.

    Google Scholar 

  • Chi, M. T. H., Bassok, M., Lewis, M. W., Reimann, P., & Glaser, R. (1989). Self-explanations: How students study and use examples in learning to solve problems. Cognitive Science, 13, 145–182.

    Google Scholar 

  • Collins, A., Brown, J. S., & Newman, S. E. (1989). Cognitive apprenticeship: Teaching the craft of reading, writing and matematics. In L. B. Resnick (Hrsg.), Knowing, learning, and instruction (S. 453–494). Hillsdale: Erlbaum.

    Google Scholar 

  • Cowan, N. (2000). The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behavioral and Brain Sciences, 24, 87–185.

    Google Scholar 

  • de Jong, T. (2005). The guided discovery principle in multimedia learning. In R. Mayer (Hrsg.), Cambridge handbook of multimedia learning (S. 215–228). New York: Cambridge University Press.

    Google Scholar 

  • de Jong, T., & Ferguson-Hessler, M. G. H. (1996). Types and qualities of knowledge. Educational Psychologist, 31, 105–113.

    Google Scholar 

  • de Jong, T., & van Joolingen, W. R. (1998). Scientific discovery learning with computer simulations of conceptual domains. Review of Educational Research, 68, 179–201.

    Google Scholar 

  • Derry, S. J. (1999). A fish called peer learning: Searching for common themes. In A. O’Donnell & A. King (Hrsg.), Cognitive perspectives on peer learning (S. 197–211). Mahwah: Erlbaum.

    Google Scholar 

  • Deutsches PISA-Konsortium (Hrsg.). (2001). PISA 2000. Basiskompetenzen von Schülerinnen und Schülern im internationalen Vergleich. Opladen: Leske + Budrich.

    Google Scholar 

  • Doise, W. (1990). The development of individual competencies through social interaction. In H. C. Foot, M. J. Morgan, & R. H. Shute (Hrsg.), Children helping children (S. 43–64). Chichester: Wiley.

    Google Scholar 

  • Driskell, J. E., Willis, R. P., & Copper, C. (1992). Effect of overlearning on retention. Journal of Applied Psychology, 77, 615–622.

    Google Scholar 

  • Eitel, A., & Kühl, T. (2019). Harmful or helpful to learning? The impact of seductive details on learning and instruction. Applied Cognitive Psychology, 33, 3–8.

    Google Scholar 

  • Ericsson, K. A., Charness, N., Feltovich, P. J., & Hoffman, R. R. (Hrsg.). (2006). The Cambridge handbook of expertise and expert performance. New York: Cambridge University Press.

    Google Scholar 

  • Ericsson, K. A., Krampe, R. T., & Tesch-Römer, C. (1993). The role of deliberate practice in the acquisition of expert performance. Psychological Review, 100, 363–406.

    Google Scholar 

  • Fischer, F. (2002). Gemeinsame Wissenskonstruktion – Theoretische und methodologische Aspekte. Psychologische Rundschau, 53, 119–134.

    Google Scholar 

  • Fischer, F., & Mandl, H. (2005). Knowledge convergence in computer-supported collaborative learning – The role of external representation tools. Journal of the Learning Sciences, 14, 405–441.

    Google Scholar 

  • Flavell, J. (1979). Metacognition and cognitive monitoring: A new area of cognitive-developmental inquiry. American Psychologist, 34, 906–911.

    Google Scholar 

  • Garner, R., Gillingham, M. G., & White, C. S. (1989). Effects of „seductive details“ on macroprocessing and microprocessing in adults and children. Cognition and Instruction, 6, 41–57.

    Google Scholar 

  • Glogger-Frey, I., Gaus, K., & Renkl, A. (2017). Learning from direct instruction: Best prepared by several self-regulated or guided invention activities? Learning & Instruction, 51, 26–35.

    Google Scholar 

  • Greene, J. A., Sandoval, W. A., & Bråten, I. (Hrsg.). (2016). Handbook of epistemic cognition. New York: Routledge.

    Google Scholar 

  • Greeno, J. G. (2006). Learning in activity. In R. K. Sawyer (Hrsg.), Cambridge handbook of the learning sciences (S. 79–96). New York: Cambridge University Press.

    Google Scholar 

  • Gruber, H., Renkl, A., & Schneider, W. (1994). Expertise und Gedächtnisentwicklung: Längsschnittliche Befunde aus der Domäne Schach. Zeitschrift für Entwicklungspsychologie und Pädagogische Psychologie, 26, 53–70.

    Google Scholar 

  • Hasselhorn, M., & Artelt, C. (2018). Metakognition. In D. H. Rost, J. R. Sparfeldt, & S. R. Buch (Hrsg.), Handwörterbuch Pädagogische Psychologie (5. Aufl., S. 520–525). Weinheim: Beltz.

    Google Scholar 

  • Hmelo-Silver, C. E., Duncan, R. G., & Chinn, C. A. (2007). Scaffolding and achievement in problem-based and inquiry learning: A response to Kirschner, Sweller, and Clark (2006). Educational Psychologist, 42, 99–107.

    Google Scholar 

  • Kalyuga, S., & Sweller, J. (2004). Measuring knowledge to optimize cognitive load factors during instruction. Journal of Educational Psychology, 96, 558–568.

    Google Scholar 

  • Kintsch, E., & Kintsch, W. (1996). Learning from text. In E. de Corte & F. E. Weinert (Hrsg.), International encyclopedia of developmental and instructional psychology (S. 519–524). Exeter: Pergamon.

    Google Scholar 

  • Klieme, E., & Leutner, D. (2006). Kompetenzmodelle zur Erfassung individueller Lernergebnisse und zur Bilanzierung von Bildungsprozessen (Überarbeitete Fassung des Antrags an die DFG auf Einrichtung eines Schwerpunktprogramms). Frankfurt: DIPF.

    Google Scholar 

  • Koedinger, K. R., & Aleven, V. (2007). Exploring the assistance dilemma in experiments with Cognitive Tutors. Educational Psychology Review, 19, 239–264.

    Google Scholar 

  • Koedinger, K. R., & Aleven, V. (2016). An interview reflection on “Intelligent tutoring goes to school in the big city”. International Journal of Artificial Intelligence in Education, 26, 13–24.

    Google Scholar 

  • Krause, U.-M., & Stark, R. (2006). Vorwissen aktivieren. In H. Mandl & H. F. Friedrich (Hrsg.), Handbuch Lernstrategien (S. 38–49). Göttingen: Hogrefe.

    Google Scholar 

  • Kuhn, D. (2005). Education for thinking. Cambridge: Harvard University Press.

    Google Scholar 

  • Kulik, J. A., & Fletcher, J. D. (2016). Effectiveness of intelligent tutoring systems: A meta-analytic review. Review of Educational Research, 86, 42–78.

    Google Scholar 

  • Lesgold, A. M., Rubinson, H., Feltovich, P. J., Glaser, R., Klopfer, D., & Wang, Y. (1988). Expertise in a complex skill: Diagnosing X-ray pictures. In M. T. H. Chi, R. Glaser, & M. Farr (Hrsg.), The nature of expertise (S. 311–342). Hillsdale: Erlbaum.

    Google Scholar 

  • Loyens, S. M. M., & Rikers, R. M. J. P. (2017). Instruction based on inquiry. In R. E Mayer & P. A Alexander (Hrsg.), Handbook of research on learning and instruction (2. Aufl., S. 405–431). New York: Routledge.

    Google Scholar 

  • Ma, W., Adesope, O. O., Nesbit, J. C., & Liu, Q. (2014). Intelligent tutoring systems and learning outcomes: A meta-analysis. Journal of Educational Psychology, 106, 901–918.

    Google Scholar 

  • Mandl, H., & Friedrich, H. F. (2006). Handbuch Lernstrategien. Göttingen: Hogrefe.

    Google Scholar 

  • Mandl, H., Gruber, H., & Renkl, A. (1993). Misconceptions and knowledge compartmentalization. In G. Strube & K. F. Wender (Hrsg.), The cognitive psychology of knowledge: The German Wissenspsychologie project (S. 161–176). Amsterdam: Elsevier.

    Google Scholar 

  • Mayer, R. E. (2004). Should there be a three-strikes-rule against pure discovery learning? A case for guided methods of instruction. American Psychologist, 59, 14–19.

    Google Scholar 

  • Mayer, R. E. (Hrsg.). (2014). Cambridge handbook of multimedia learning (2. Aufl., S. 391–412). Cambridge: Cambridge University Press.

    Google Scholar 

  • Moreno, R., & Mayer, R. (2007). Interactive multimodal learning environments. Educational Psychology Review, 19, 309–326.

    Google Scholar 

  • Mousavi, S. Y., Low, R., & Sweller, J. (1995). Reducing cognitive load by mixing auditory and visual presentation modes. Journal of Educational Psychology, 87, 319–334.

    Google Scholar 

  • Newell, A., & Rosenbloom, P. S. (1981). Mechanisms of skill acquisition and the law of practice. In J. R. Anderson (Hrsg.), Cognitive skills and their acquisition. Hillsdale: Erlbaum.

    Google Scholar 

  • O’Reilly, T., & McNamara, D. S. (2007). Reversing the reverse cohesion effect: Good texts can be better for strategic, high-knowledge readers. Discourse Processes, 43, 121–152.

    Google Scholar 

  • Otieno, C., Spada, H., Liebler, K., Ludemann, T., Deil, U., & Renkl, A. (2014). Informing about climate change and invasive species: How the presentation of information affects perception of risk, emotions, and learning. Environmental Education Research, 20, 612–638.

    Google Scholar 

  • Paas, F., Renkl, A., & Sweller, J. (2003). Cognitive load theory and instructional design: Recent developments. Educational Psychologist, 38, 1–4.

    Google Scholar 

  • Pauli, C., & Lipowsky, F. (2007). Mitmachen oder zuhören? Mündliche Schülerinnen- und Schülerbeteiligung im Mathematikunterricht. Unterrichtswissenschaft, 35, 101–124.

    Google Scholar 

  • PISA-Konsortium Deutschland (Hrsg.). (2007). PISA 2006 – Die Ergebnis der dritten internationalen Vergleichsstudie. Münster: Waxmann.

    Google Scholar 

  • Renkl, A. (1996). Träges Wissen: Wenn Erlerntes nicht genutzt wird. Psychologische Rundschau, 47, 78–92.

    Google Scholar 

  • Renkl, A. (1997a). Learning from worked-out examples: A study on individual differences. Cognitive Science, 21, 1–29.

    Google Scholar 

  • Renkl, A. (1997b). Lernen durch Lehren. Zentrale Wirkmechanismen beim kooperativen Lernen. Wiesbaden: DUV.

    Google Scholar 

  • Renkl, A. (2001). Situated learning, out of school and in the classroom. In P. B. Baltes & N. J. Smelser (Hrsg.), International encyclopedia of the social & behavioral sciences (Bd. 21, S. 14133–14137). Amsterdam: Pergamon.

    Google Scholar 

  • Renkl, A. (2008a). Kooperatives Lernen. In W. Schneider & M. Hasselhorn (Hrsg.), Handbuch Psychologie: Bd. Pädagogische Psychologie (S. 84–94). Göttingen: Hogrefe.

    Google Scholar 

  • Renkl, A. (2008b). Lehren und Lernen im Kontext der Schule. In A. Renkl (Hrsg.), Lehrbuch Pädagogische Psychologie (S. 109–153). Bern: Huber.

    Google Scholar 

  • Renkl, A. (2011). Aktives Lernen = gutes Lernen? Reflektion zu einer (zu) einfachen Gleichung. Unterichtswissenschaft, 39, 194–196.

    Google Scholar 

  • Renkl, A. (2012). Modellierung von Kompetenzen oder von interindividuellen Kompetenzunterschieden: Ein unterschätzter Unterschied? Psychologische Rundschau, 63, 50–53.

    Google Scholar 

  • Renkl, A. (2014). Toward an instructionally oriented theory of example-based learning. Cognitive Science, 38, 1–37.

    Google Scholar 

  • Renkl, A. (2015a). Different roads lead to Rome: The case of principle-based cognitive skills. Learning: Research & Practice, 1, 79–90.

    Google Scholar 

  • Renkl, A. (2015b). Lernen in Gruppen: Ein Minihandbuch (2. erweiterte und leicht modifizierte Aufl.). Landau: Verlag Empirische Pädagogik

    Google Scholar 

  • Renkl, A. (2017). Learning from worked examples in mathematics: Students relate procedures to principles. ZDM Mathematics Education, 49, 571–584.

    Google Scholar 

  • Renkl, A., & Atkinson, R. K. (2003). Structuring the transition from example study to problem solving in cognitive skills acquisition: A cognitive load perspective. Educational Psychologist, 38, 15–22.

    Google Scholar 

  • Renkl, A., & Atkinson, R. K. (2007). Interactive learning environments: Contemporary issues and trends. An introduction to the special issue. Educational Psychology Review, 19, 235–238.

    Google Scholar 

  • Renkl, A., Stark, R., Gruber, H., & Mandl, H. (1998). Learning from worked-out examples: The effects of example variability and elicited self-explanations. Contemporary Educational Psychology, 23, 90–108.

    Google Scholar 

  • Renkl, A., Schworm, S., & Hilbert, T. S. (2004). Lernen aus Lösungsbeispielen: Eine effektive, aber kaum genutzte Möglichkeit, Unterricht zu gestalten. In J. Doll & M. Prenzel (Hrsg.), Bildungsqualität von Schule: Lehrerprofessionalisierung, Unterrichtsentwicklung und Schülerförderung als Strategien der Qualitätsverbesserung (S. 77–92). Münster: Waxmann.

    Google Scholar 

  • Robins, S., & Mayer, R. E. (1993). Schema formation in analogical reasoning. Journal of Educational Psychology, 85, 529–538.

    Google Scholar 

  • Rohrer, D., & Taylor, K. (2006). The effects of overlearning and distributed practice on the retention of mathematics knowledge. Applied Cognitive Psychology, 20, 1209–1224.

    Google Scholar 

  • Rourke, A., & Sweller, J. (2009). The worked-example effect using ill-defined problems: Learning to recognise designers’ styles. Learning and Instruction, 19, 185–199.

    Google Scholar 

  • Rowland, C. A. (2014). The effect of testing versus restudy on retention: A meta-analytic review of the testing effect. Psychological Bulletin, 140, 1432–1463.

    Google Scholar 

  • Roy, M., & Chi, M. T. H. (2005). Self-explanation in a multi-media context. In R. Mayer (Hrsg.), Cambridge handbook of multimedia learning (S. 271–286). Cambridge: Cambridge University Press.

    Google Scholar 

  • Rummel, N., & Spada, H. (2005). Learning to collaborate: An instructional approach to promoting collaborative problem solving in computer-mediated settings. Journal of the Learning Sciences, 14, 201–241.

    Google Scholar 

  • Rummer, R., Schweppe, J., Scheiter, K., & Gerjets, P. (2008). Lernen in Multimedia: Die kognitiven Grundlagen des Modalitätseffekts. Psychologische Rundschau, 59, 98–108.

    Google Scholar 

  • Salden, R., Aleven, V., Renkl, A., & Schwonke, R. (2009). Worked examples and tutored problem solving: Redundant or synergistic forms of support? Topics in Cognitive Science, 1, 203–213.

    Google Scholar 

  • Schaffner, E., & Schiefele, U. (2007). The effect of experimental manipulation of student motivation on the situational representation of text. Learning and Instruction, 17, 755–772.

    Google Scholar 

  • Schmidt, H. G., de Grave, W. S., De Volder, M. L., Moust, J. H. C., & Patel, V. L. (1989). Explanatory models in the processing of science text: The role of prior knowledge activation through small-group discussion. Journal of Educational Psychology, 81, 610–619.

    Google Scholar 

  • Schnotz, W. (2010). Textverstehen. In D. H. Rost (Hrsg.), Handwörterbuch Pädagogische Psychologie (4. Aufl., S. 843–854). Weinheim: Beltz.

    Google Scholar 

  • Schwonke, R., Renkl, A., Krieg, K., Wittwer, J., Aleven, V., & Salden, R. (2009). The worked-example effect: Not an artefact of lousy control conditions. Computers in Human Behavior, 25, 258–266.

    Google Scholar 

  • Schworm, S., & Renkl, A. (2007). Learning argumentation skills through the use of prompts for self-explaining examples. Journal of Educational Psychology, 99, 285–296.

    Google Scholar 

  • Siegler, R. S., & Jenkins, E. (1989). How children discover strategies. Hillsdale: Erlbaum.

    Google Scholar 

  • Skinner, B. F. (1954). The science of learning and the art of teaching. Harvard Educational Review, 24, 86–97.

    Google Scholar 

  • Stahl, G., Koshmann, T., & Suthers, D. D. (2014). Computer-supported collaborative learning. In R. K. Sawyer (Hrsg.), Cambridge handbook of the learning sciences (2. Aufl., S. 479–500). New York: Cambridge University Press.

    Google Scholar 

  • Sweller, J., Ayres, P., & Kalyuga, S. (2011). Cognitive load theory. New York: Springer.

    Google Scholar 

  • Tamir, P. (1996). Discovery learning and teaching. In E. de Corte & F. E. Weinert (Hrsg.), International encyclopedia of developmental and instructional psychology (S. 355–361). Exeter: Pergamon.

    Google Scholar 

  • Tarmizi, R. A., & Sweller, J. (1988). Guidance during mathematical problem solving. Journal of Educational Psychology, 80, 424–436.

    Google Scholar 

  • van Dijk, T. A., & Kintsch, W. (1983). Strategies of discourse comprehension. New York: Academic.

    Google Scholar 

  • van Joolingen, W. R., de Jong, T., & Dimitrakopoulou, A. (2007). Issues in computer supported inquiry learning in science. Journal of Computer Assisted Learning, 23, 111–119.

    Google Scholar 

  • van Merriënboer, J. J. G., & Kester, L. (2005). The four-component instructional design model: Multimedia principles in environments for complex learning. In R. E. Mayer (Hrsg.), The Cambridge handbook of multimedia learning (S. 71–93). Cambridge: Cambridge University Press.

    Google Scholar 

  • Veenman, M. V. J., Van Hout-Wolters, B. H. A. M., & Afflerbach, P. (2006). Metacognition and learning: Conceptual and methodological considerations. Metacognition and Learning, 1, 3–14.

    Google Scholar 

  • Verschaffel, L., Greer, B., & de Corte, E. (2000). Making sense of word problems. Lisse: Swets & Zeitlinger.

    Google Scholar 

  • Vogel, F., Wecker, C., Kollar, I., & Fischer, F. (2017). Socio-cognitive scaffolding with computer-supported collaborations scripts: A meta-analysis. Educational Psychology Review, 29, 477–511.

    Google Scholar 

  • vom Hofe, R. (2001). Mathematik entdecken – Neue Argumente für entdeckendes Lernen. mathematik lehren, 105, 4–8.

    Google Scholar 

  • Vygotsky, L. S. (1978). Mind in society. The development of higher psychological processes. Cambridge: Harvard University Press.

    Google Scholar 

  • Weinberger, A., Stegmann, K., & Fischer, F. (2007). Knowledge convergence in collaborative learning: Concepts and assessment. Learning and Instruction, 17, 416–426.

    Google Scholar 

  • Weinstein, C. F., & Mayer, R. (1986). The teaching of learning strategies. In M. C. Wittrock (Hrsg.), Handbook of research on teaching (3. Aufl., S. 315–327). New York: Macmillan.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Renkl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Renkl, A. (2020). Wissenserwerb. In: Wild, E., Möller, J. (eds) Pädagogische Psychologie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-61403-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-61403-7_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-61402-0

  • Online ISBN: 978-3-662-61403-7

  • eBook Packages: Psychology (German Language)

Publish with us

Policies and ethics