Skip to main content

Particular Flow Problems of Large Aspect-Ratio Wings

  • Chapter
  • First Online:
Separated and Vortical Flow in Aircraft Wing Aerodynamics

Abstract

The topics of this book are the basic principles and Unit Problems of separated and vortical flow in aircraft wing aerodynamics. This chapter is devoted to short considerations of application-oriented topics. Complete literature reviews are not intended, we give compact accounts of selected topics and provide references for further reading.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The relation of the specific impulse \(I_{sp}\) to the specific fuel consumption b [kg/s N] of the propulsion system is \(I_{sp}\) = 1/(b g).

  2. 2.

    The figure goes back to F. Thomas [4].

  3. 3.

    If laminar-turbulent transition would be involved, the situation would be much more challenging.

  4. 4.

    The shear layers leaving the trailing edges of all elements of the high-lift system are also noise sources due to the finite thickness of the edges, Sect. 6.3.

  5. 5.

    We do not present the details of the numerical approaches. The interested reader is asked to consult the original publication [19].

  6. 6.

    At propeller-driven subsonic aircraft with no or only small wing sweep usually no leading-edge devices are employed. Also playing a role there is the favorable interference between the propeller wake and the wing flow.

  7. 7.

    In our discussion we assume that instead of the droop nose device (DND) inboard of the engine also a slat is present, like outboard of it.

  8. 8.

    The higher the bypass ratio, the lower are the fuel consumption and the noise emission.

  9. 9.

    Attachment and separation lines are singular lines, for the related flow properties see Sect. 7.3, respectively [21].

  10. 10.

    The classical winglet is a vertical surface at the wing tip, whereas now wing-tip extensions evolve smoothly out of the wing’s surface. Sharklet so-called are winglets solely at the aircraft of the A320 family of Airbus, see, e.g., [33].

  11. 11.

    Airbus studies such and alternative foldable solutions.

References

  1. Délery, J.: Transonic shock-wave boundary-layer interactions. In: Babinsky, H., Harvey, J.K. (eds.) Shock-Wave Boundary-Layer Interactions, pp. 5–86. Cambridge University Press, Cambridge (2011)

    Chapter  Google Scholar 

  2. Vos, R., Farokhi, S.: Introduction to Transonic Aerodynamics. Springer Science+Business Media, Dordrecht (2015)

    Book  Google Scholar 

  3. Hirschel, E.H.: Basics of Aerothermodynamics, 2nd edn (revised). Springer, Cham (2015)

    Google Scholar 

  4. Thomas, F.: Entwurfsgerechte Tragflügelaerodynamik. In: Bericht uber die Sitzung des WGLR-Fachausschusses fur Aerodynamik, - Entwurfsaerodynamik. Deutsche Luft- und Raumfahrt, Mittellung 67-24 (1967)

    Google Scholar 

  5. Meier, H.U. (ed.): German Development of the Swept Wing–1935-1945. Library of Flight, AIAA, Reston (2010)

    Google Scholar 

  6. Deck, S.: Numerical simulation of transonic buffet over a supercritical airfoil. AIAA J. 43(7), 1556–1566 (2005)

    Article  Google Scholar 

  7. Grossi, F., Braza, M., Hoarau, Y.: Prediction of transonic buffet by Delayed Detached-Eddy simulation. AIAA J. 52(10), 2300–2312 (2014)

    Google Scholar 

  8. Jacquin, L., Molton, P., Deck, S., Maury, B., Soulevant, D.: Experimental study of shock oscillation over a transonic supercritical profile. AIAA J. 47(9), 1985–1994 (2009)

    Google Scholar 

  9. Iovnovich, M., Raveh, D.E.: Numerical study of shock buffet on three-dimensional wings. AIAA J. 53(2), 449–463 (2015)

    Google Scholar 

  10. Stanewsky, E., Délery, J., Fulker, J., Geissler, W. (eds.): EUROSHOCK—Drag Reduction by Passive Shock Control. Results of the Project EUROSHOCK, AER2-CT92-0049, supported by the European Union, 1993–1995. Notes on Numerical Fluid Mechanics, Vol. 56. Vieweg, Braunschweig Wiesbaden (1997)

    Google Scholar 

  11. Stanewsky, E., Délery, J., Fulker, J., Matteis, P. de (eds.): Drag Reduction by Shock and Boundary Layer Control. Results of the Project EUROSHOCK II, supported by the European Union, 1996–1999. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, NNFM80. Springer, Berlin (2002)

    Google Scholar 

  12. Mayer, R., Lutz, Th, Krämer, E.: Numerical study on the ability of shock control bumps for buffet control. AIAA J. 56(5), 1978–1987 (2018)

    Google Scholar 

  13. Thiede, P. (ed.): Aerodynamic drag reduction technologies. In: Proceedings of the CEAS/DragNet European Drag Reduction Conference, 19–21 June 2000, Potsdam, Germany. Notes on Numerical Fluid Mechanics, NNFM76. Springer, Berlin (2001)

    Google Scholar 

  14. Flaig, A., Hilbig, R.: High-lift design for large civil aircraft. AGARD-CP-515, 31.1–31.12 (1993)

    Google Scholar 

  15. Strüber, H.: The aerodynamic design of the A350 XWB-900 high lift system. Paper presented at the 29th Congress of the International Council of the Aeronautical Sciences, St. Petersburg, Russia, 7–12 Sept 2014 (2014)

    Google Scholar 

  16. Rudolph, P.K.C.: High-lift systems on commercial airliners. NASA Contractor Rep. 4746 (1996)

    Google Scholar 

  17. Wild, J.: Hochauftrieb. In: Rossow, C.-C., Wolf, K., Horst, P. (eds.) Handbuch der Luftfahrzeugtechnik, pp. 184–192. Carl Hanser Verlag, München (2014)

    Google Scholar 

  18. Reckzeh, D.: Multifunctional wing moveables: design of the A350 XWB and the way to future concepts. Paper presented at the 29th Congress of the International Council of the Aeronautical Sciences, St. Petersburg, Russia, 7–12 Sept 2014 (2014)

    Google Scholar 

  19. Probst, A., Probst, S., Schwamborn, D.: 3-Element Airfoil. In: C. Mockett, W. Haase, D. Schwamborn (eds.): Go4Hybrid—Grey area mitigation for hybrid RANS-LES methods. Results of the 7th Framework Research Project Go4Hybrid, funded by the European Union, 2013–2015. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, NNFM134, Springer, Cham, pp. 155–171 (2018)

    Google Scholar 

  20. Mockett, C., Haase, W., Schwamborn, D. (eds.): Go4Hybrid: grey area mitigation for hybrid RANS-LES methods. Results of the 7th Framework Res. Project Go4Hybrid, funded by the European Union, 2013–2015. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, NNFM134, Springer, Cham (2018)

    Google Scholar 

  21. Hirschel, E.H., Cousteix, J., Kordulla, W.: Three-Dimensional Attached Viscous Flow. Springer, Berlin (2013)

    MATH  Google Scholar 

  22. Breitsamter, C.: Innovative High-Lift Concepts of the Integrated Research Programs AWIATOR and IHK. LTH-AD 04 02 004 (2009)

    Google Scholar 

  23. Jiràsek, A.: Vortex Generator Modeling and its Application to Optimal Control of Airflow in Inlet. Doctoral Thesis, KTH Royal Institute of Technology, Rep TRITA-AVE 2006:66, Stockholm, Sweden (2006)

    Google Scholar 

  24. Rudnik, R.: Transportflugzeuge. In: Rossow, C.-C., Wolf, K., Horst, P. (eds.) Handbuch der Luftfahrzeugtechnik, pp. 83–113. Carl Hanser Verlag, München (2014)

    Google Scholar 

  25. Küchemann, D.: The Aerodynamic Design of Aircraft. Pergamon Press, Oxford, : also AIAA Education Series, p. 2012. Va, AIAA, Reston (1978)

    Google Scholar 

  26. Lengers, M.: Industrial assessment of overall aircraft driven local active flow control. Paper presented at the 29th Congress of the Internatioal Council of the Aeronautical Sciences, St. Petersburg, Russia, 7–12 Sept 2014 (2014)

    Google Scholar 

  27. von Geyr, H., Schade, N., van der Burg, J.W., Eliasson, P., Esquieu, S.: CFD Prediction of maximum lift effects on realistic high-lift commercial-aircraft configurations within the european project EUROLIFT II. AIAA-Paper, 2007–4299 (2007)

    Google Scholar 

  28. Haines A.B.: Scale effects on aircraft and weapon aerodynamics. AGARD-AG-323 (1994)

    Google Scholar 

  29. Fricke, S., Ciobaca, V., Wild, J., Norman, D.: Numerical studies of active flow control applied at the engine-wing junction. In: R. Radespiel, R. Niehuis, N. Kroll, K. Behrends (eds.): Advances in Simulation of Wing and Nacelle Stall. Closing Symposium of DGLR Research Unit FOR 1066, 1–2 Dec 2014, Braunschweig, Germany. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, NNFM131, Springer, Cham, pp. 397–411 (2016)

    Google Scholar 

  30. Radespiel, R., Niehuis, R., Kroll, N., Behrends, K. (eds.): Advances in Simulation of Wing and Nacelle Stall. Closing Symp. of DGLR Research Unit FOR 1066, Dec. 1–2, 2014, Braunschweig, Germany. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, NNFM131, Springer-Verlag Cham Heidelberg (2016)

    Google Scholar 

  31. Wichmann, G.: Maximum lift effects on realistic high-lift transport aircraft configurations with nacelle strakes. LTH-AD 04 01 013 (2011)

    Google Scholar 

  32. Nicolai, L.M.: Fundamentals of Aircraft Design. METS, Inc., San Jose (1975)

    Google Scholar 

  33. Heller, G., Kreuzer, P., Dirmeier, S.: Development and integration of a new high performance wingtip device for transonic aircraft. ICAS 2002 Congress, pp. 122.1–122.7 (2002)

    Google Scholar 

  34. Büscher, A.: Flügelendformen zur Leistungssteigerung eines Langstreckenflugzeuges (Wing-Tip Devices for the Performance Enhancement of a Long-Range Transport Aircraft). Doctoral Thesis, Technical University Braunschweig, Germany. Shaker Verlag, Aachen, ZLR-Forschungsbericht 2008-06 (2008)

    Google Scholar 

  35. Büscher, A., Radespiel, R., Streit, T.: Modeling and design of wing tip devices at various flight conditions using a databased aerodynamic prediction tool. Aerospace Sci. Technol. 10, 668–678 (2006)

    Google Scholar 

  36. Rossow, V.J.: Lift-generated vortex wakes of subsonic transport aircraft. Prog. Aerosp. Sci. 35(6), 507–660 (1999)

    Google Scholar 

  37. Breitsamter, C.: Nachlaufwirbelsysteme großer Transportflugzeuge - Experimentelle Charakterisierung und Beeinflussung (Wake-Vortex Systems of Large Transport Aircraft—Experimental Characterization and Manipulation). Inaugural Thesis, Technische Universität München, 2007, utzverlag, München, Germany (2007)

    Google Scholar 

  38. Gerz, T., Holzäpfel, F., Darracq, D.: Commercial aircraft wake vortices. Prog. Aerosp. Sci. 38(3), 181–208 (2002)

    Article  Google Scholar 

  39. Breitsamter, C.: Wake vortex characteristics of transport aircraft. Prog. Aerosp. Sci. 47(1), 89–134 (2011)

    Article  Google Scholar 

  40. Crow, S.C.: Stability theory for a pair of trailing vortices. AIAA J. 8(12), 2172–2179 (1970)

    Article  Google Scholar 

  41. Coustols, E., Stumpf, E., Jacquin, L., Moens, F., Vollmers, H., Gerz, T.: “Minimised Wake”: A Collaborative Research Programme on Aircraft Wake Vortices. AIAA-Paper, 2003–0938 (2003)

    Google Scholar 

  42. Croom, D.R.: The development and use of spoilers as vortex attenuators. In: Proceedings of the NASA Symposium on Wake Vortex Minimization. NASA SP-409, pp. 339–368 (1976)

    Google Scholar 

  43. Schell, I., Özger, E., Jacob, D.: Influence of different flap settings on the wake vortex structure of a rectangular wing with flaps and means of alleviation. Aerosp. Sci. Technol. 4(2), 79–90 (2000)

    Google Scholar 

  44. Hünecke, K.: From formation to decay–extended-time wake vortex characteristics of transport-type aircraft. AIAA Paper, 2002–3265 (2002)

    Google Scholar 

  45. Donaldson, C.duP., Bilanin, A.J.: Vortex wakes of conventional aircraft. AGARDograph No. 204 (1975)

    Google Scholar 

  46. Crouch, J.D., Miller, G., Spalart, P.R.: Active control system for breakup of airplane trailing vortices. AIAA J. 39(12), 2374–2381 (2001)

    Google Scholar 

  47. Breitsamter, C., Allen, A.: Transport aircraft wake influenced by oscillating winglet flaps. J. Aircraft 46(1), 175–188 (2009)

    Google Scholar 

  48. Crow, S.C., Bate, E.J.: Lifespan of trailing vortices in a turbulent atmosphere. J. Aircraft 13(7), 476–482 (1976)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernst Heinrich Hirschel .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hirschel, E.H., Rizzi, A., Breitsamter, C., Staudacher, W. (2021). Particular Flow Problems of Large Aspect-Ratio Wings. In: Separated and Vortical Flow in Aircraft Wing Aerodynamics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-61328-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-61328-3_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-61326-9

  • Online ISBN: 978-3-662-61328-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics