Skip to main content

Abstract

This chapter is devoted to the discussion of the flow—mainly the trailing vortex layer and the pair of trailing vortices—past lifting large aspect-ratio wings in view mostly of the results and insights gained in Chap. 4. Considered always is the clean-wing situation, selected topics of the real-wing situation (high-lift system, integrated engines etc.) are presented in Chap. 9.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Regarding differentiation aspects of large and low aspect-ratio wings see Sect. 8.4.4.

  2. 2.

    This kink near the wing root is called a Yehudi break after its inventor at Boeing [2].

  3. 3.

    These vortices sometimes are called necklace vortices.

  4. 4.

    The decades old concept of in-flight camber changes now seems to approach reality thanks to the potential of carbon-fiber structures.

  5. 5.

    HISSS method = Higher-Order Subsonic-Supersonic Singularity method.

  6. 6.

    The large leading-edge sweep of the wing combined with a large angle of attack—see below—makes it necessary to investigate whether leading-edge separation can be present.

  7. 7.

    For the definition of the trailing-edge flow shear angle \(\psi _{e}\) and the vortex-line angle \(\varepsilon \) see Fig. 4.11.

  8. 8.

    This deflection is the reason for the well observed unwelcome accumulation of boundary-layer material at the wing root (and the fuselage) of forward swept wings. This can lead to adverse separation phenomena and, with rear-mounted engines at the aft end of the fuselage, makes special measures necessary regarding the position of the engines. The general deflection of course is also a property of the trailing vortex layer which leaves the wing’s trailing edge.

  9. 9.

    In the mid-section of the wing, the Euler solution shows an irregularity, which seems to be due to the sharp apex of the wing.

  10. 10.

    The 1-g shape is the shape of the elastic wing due to the aerodynamic load at nominal level flight, see, e.g., [7].

  11. 11.

    In [27] this situation is called flow obstacle, although there the swept obstacle is not a topic.

  12. 12.

    Note that at the leading edge the vortex separation is beginning at the rear and then moves forward with increasing angle of attack.

  13. 13.

    Note that along the attachment line the flow velocity does not change much. This is indicated, too, by the pressure distribution along it, see the figure of the attachment line’s end, Fig. 8.31, left side. Hence the consideration of the local chord properties—without regard to their spanwise location—is permitted, though not in an exact quantitative sense.

  14. 14.

    Note that the upper indices ’2’ of the velocity components do not indicate that they are squared velocities. They simple indicate the lateral direction in the local wake coordinate system, t in Fig. 4.11.

  15. 15.

    This observation assumes a more or less two-dimensional behavior of the wing’s boundary layers. The justification is twofold: (1) the thickness of the boundary layer along the attachment line is more or less constant, and with this the initial conditions for the chordwise flow, (2) a larger three-dimensionality is present only in the immediate vicinity of the attachment line. Hence for qualitative considerations and also for crude estimations the assumption of two-dimensionality is permissible.

  16. 16.

    The superscript index notation does not mean that the velocity components are contravariant ones as they are defined for instance in [26].

  17. 17.

    The WRP was chosen as initial position, which, however, is a makeshift, because the actual flow situation at that location is highly complex, Fig. 8.33.

References

  1. Breitsamter, C.: Wake vortex characteristics of transport aircraft. Prog. Aerosp. Sci. 47(1), 89–134 (2011)

    Google Scholar 

  2. Obert, E.: Aerodynamic Design of Transport Aircraft. IOS Press, Delft (2009)

    Google Scholar 

  3. Pfnür, S.: Numerical Analysis of the Trailing-Edge Vortex Layer and the Wake-Vortex System of a Generic Transport-Aircraft Configuration. Master’s Thesis, Institut für Luft- und Raumfahrt, Technical University München, Germany (2015)

    Google Scholar 

  4. Schrauf, G., Laporte, F.: AWIATOR—wake-vortex characterization methodology. In: KATnet Conference on Key Aerodynamic Technologies, Bremen, Germany (2005). Accessed 20–22 June 2005

    Google Scholar 

  5. Prandtl, L.: Tragflügeltheorie, I. und II. Mitteilung. Nachrichten der Kgl. Ges. Wiss. Göttingen, Math.-Phys. Klasse, 451–477 (1918) and 107–137 (1919)

    Google Scholar 

  6. Anderson Jr., J.D.: Fundamentals of Aerodynamics, 5th edn. McGraw Hill, New York (2011)

    Google Scholar 

  7. Vos, R., Farokhi, S.: Introduction to Transonic Aerodynamics. Springer Science+Business Media, Dordrecht (2015)

    Book  Google Scholar 

  8. Küchemann, D.: The Aerodynamic Design of Aircraft. Pergamon Press, Oxford. Also AIAA Education Series, p. 2012. AIAA, Reston, V (1978)

    Google Scholar 

  9. Schlichting, H., Truckenbrodt, E.: Aerodynamik des Flugzeuges, Vol. 1 and 2, Springer-Verlag, Berlin/Göttingen/Heidelberg (1959), also: Aerodynamics of the Aeroplane, 2nd edition (revised). McGraw Hill Higher Education, New York (1979)

    Google Scholar 

  10. Rudnik, R.: Transportflugzeuge. In: Rossow, C.-C., Wolf, K., Horst, P. (eds.) Handbuch der Luftfahrzeugtechnik, pp. 83–113. Carl Hanser Verlag, München, Germany (2014)

    Google Scholar 

  11. Rizzi, A., Oppelstrup, J.: Aircraft Aerodynamik Design with Computational Software. Cambridge University Press (2020)

    Google Scholar 

  12. Kolbe, D.C., Boltz, F.W.: The Forces and Pressure Distributions at Subsonic Speeds on a Plane Wing Having \(45^{\circ }\) of Sweepback, an Aspect Ratio of 3, and a Taper Ratio of 0.5. NACA RM A51G31 (1951)

    Google Scholar 

  13. Hirschel, E.H., Sacher, P.: A Comparative Theoretical Study of the Boundary-Layer Development on Forward Swept Wings. In: R.K. Nangia (ed.), Proceedings of International Conference on Forward Swept Wings, Bristol, 1982. University of Bristol, U.K. (1983)

    Google Scholar 

  14. Hirschel, E.H., Fornasier, L.: Flowfield and Vorticity Distribution Near Wing Trailing Edges. AIAA-Paper 1984–0421 (1984)

    Google Scholar 

  15. Fornasier, L.: HISSS–A Higher-Order Subsonic/Supersonic Singularity Method for Calculating Linearized Potential Flow. AIAA-Paper 1984–1646 (1984)

    Google Scholar 

  16. Sytsma, H.S., Hewitt, B.L., Rubbert, P.E.: A Comparison of Panel Methods for Subsonic Flow Computation. AGARD-AG-241 (1979)

    Google Scholar 

  17. Hirschel, E.H.: Das Verfahren von Cousteix-Aupoix zur Berechnung von turbulenten, dreidimensionalen Grenzschichten. MBB-UFE122-AERO-MT-484, Ottobrunn, Germany (1983)

    Google Scholar 

  18. Hirschel, E.H., Rizzi, A.: The Mechanism of Vorticity Creation in Euler Solutions for Lifting Wings. In: A. Elsenaar, G. Eriksson (eds.), Proceedings Symposium on the International Vortex-Flow Experiment on Euler Code Validation, FFA Bromma, Sweden, pp. 127–162 (1987). Accessed 1–3 Oct 1986

    Google Scholar 

  19. Rizzi, A., Eriksson, L.-E.: Computation of flow around wings based on the Euler equations. J. Fluid Mech. 148, 45–71 (1984)

    Google Scholar 

  20. Vassberg, J.C., DeHaan, M.A., Rivers, S.M., Wahls, R.A.: Development of a Common Research Model for Applied CFD Validation Studies. AIAA-Paper 2008–6919 (2008)

    Google Scholar 

  21. Vassberg, J.C., Tinoco, E.N., Mani, M., Rider, B., Zickuhr, T., Levy, D.W., Brodersen, O.P., Eisfeld, B., Crippa, S., Wahls, R.A., Morrison, J.H., Mavriplis, D.J., Murayama, M.: Summary of the fourth AIAA computational fluid dynamics drag prediction workshop. J. Aircr. 51(4), 1070–1089 (2014)

    Google Scholar 

  22. Levy, D.W., Laflin, K.R., Tinoco, E.N., Vassberg, J.C., Mani, M., Rider, B., Rumsey, C.L., Wahls, R.A., Morrison, J.H., Brodersen, O.P., Crippa, S., Mavriplis, D.J., Murayama, M.: Summary of data from the fifth computational fluid dynamics drag prediction workshop. J. Aircr. 51(4), 1194–1213 (2014)

    Google Scholar 

  23. Gerhold, T.: Overview of the Hybrid RANS Code TAU. In Kroll, N., Fassbender, J. (eds.) MEGAFLOW—Numerical Flow Simulation for Aircraft Design. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, NNFM 89, pp. 81–92. Springer, Berlin (2005)

    Google Scholar 

  24. Spalart, P.R., Allmaras, S.R.: A One-Equation Turbulence Model for Aerodynamic Flows. AIAA-Paper 1992–0439 (1992)

    Google Scholar 

  25. Menter, F.R.: Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 32(8), 1598–1605 (1994)

    Google Scholar 

  26. Hirschel, E.H., Cousteix, J., Kordulla, W.: Three-Dimensional Attached Viscous Flow. Springer, Berlin (2014)

    Book  Google Scholar 

  27. Délery, J.: Three-Dimensional Separated Flow Topology. ISTE, London and Wiley (2013)

    Book  Google Scholar 

  28. Kármán, Th, von, : Aerodynamics-Selected Topics in the Light of their Historical Development. Cornell University Press, Ithaca, New York (1954)

    Google Scholar 

  29. Göthert, B.: Systematische Untersuchungen an Flügeln mit Klappen und Hilfsklappen (Systematic Investigations at Wings with Flaps and Servo-Flaps). Doctoral Thesis, Technical University Braunschweig, Germany (1940), also Jahrbuch 1940 der Luftfahrtforschung, pp. 278–307 (1940)

    Google Scholar 

  30. Wanie, K.M., Hirschel, E.H., Schmatz, M.A.: Analysis of Numerical Solutions for Three-Dimensional Lifting Wing Flows. Z. f. Flugwissenschaften und Weltraumforschung (ZFW) 15, 107–118 (1991)

    Google Scholar 

  31. Breitsamter, C.: Nachlaufwirbelsysteme großer Transportflugzeuge - Experimentelle Charakterisierung und Beeinflussung (Wake-Vortex Systems of Large Transport Aircraft—Experimental Characterization and Manipulation). Inaugural Thesis, Technische Universität München, 2007, utzverlag, München, Germany (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernst Heinrich Hirschel .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hirschel, E.H., Rizzi, A., Breitsamter, C., Staudacher, W. (2021). Large Aspect-Ratio Wing Flow. In: Separated and Vortical Flow in Aircraft Wing Aerodynamics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-61328-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-61328-3_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-61326-9

  • Online ISBN: 978-3-662-61328-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics