Skip to main content

Abstract

This chapter is devoted to a brief introduction to elements of vortex theory, which are of relevance for the topic of the book. We shortly outline each item, give basic mathematical descriptions, illustrating sketches, and provide supporting references.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In the literature often the term “Lanchester–Prandtl-Theory” is found, in Germany it reads “Prandtl–Lanchester-Theory”, see also the remark on Sect. 1.4.

  2. 2.

    Solenoidal means source-free, or zero divergence in all points of a vector field.

  3. 3.

    The simple lifting-line model anyway does hold only for wings with large aspect ratio, say \(\varLambda \) \(\gtrapprox \) 3.

  4. 4.

    Regarding the Kutta condition in the reality of aircraft see Chap. 6.

  5. 5.

    The barotropic fluid is a fluid, whose density is only a function of pressure.

  6. 6.

    Regarding the development and the structure of the wake of a large aspect-ratio wing see the discussion of the corresponding Unit Problem in Sect. 8.4.

  7. 7.

    Regarding the reference area we note that Airbus uses the ‘Airbus Gross’ definition and Boeing the ‘Wimpress’ definition (after its inventor at Boeing), www.lissys.demon.co.uk/pug/c03.html.

  8. 8.

    Local force and moment coefficients are denoted with lower-case letter indices.

References

  1. Saffmann, P.G.: Vortex Dynamics. Cambridge University Press (1992)

    Google Scholar 

  2. Lugt, H.J.: Introduction to Vortex Theory. Vortex Flow Press, Potomac, Maryland, USA (1996)

    Google Scholar 

  3. Wu, J.-Z., Ma, H.-Y., Zhou, M.-D.: Vorticity and Vortex Dynamics. Springer, Berlin Heidelberg New York (2006)

    Google Scholar 

  4. Schlichting, H., Truckenbrodt, E.: Aerodynamik des Flugzeuges, Vol. 1 and 2, Springer-Verlag, Berlin/Göttingen/Heidelberg, 1959, also: Aerodynamics of the Aeroplane, 2nd edition (revised). McGraw Hill Higher Education, New York (1979)

    Google Scholar 

  5. Anderson Jr., J.D.: Fundamentals of Aerodynamics, 5th edn. McGraw Hill, New York (2011)

    Google Scholar 

  6. Drela, M.: Flight Vehicle Aerodynamics. The MIT Press, Cambridge, MA (2014)

    Google Scholar 

  7. Rossow, C.-C., Wolf, K., Horst, P. (eds.): Handbuch der Luftfahrzeugtechnik. Carl Hanser Verlag, München, Germany (2014)

    Google Scholar 

  8. Anderson Jr., J.D.: The Airplane: A History of Its Technology. AIAA, Reston Va (2002)

    Google Scholar 

  9. Hirschel, E.H., Prem, H., Madelung, G. (eds.): Aeronautical Research in Germany–from Lilienthal until Today. Springer-Verlag, Berlin Heidelberg New York (2004)

    Google Scholar 

  10. Serrin, J.B.: Mathematical Principles of Classical Fluid Mechanics. In S. Flügge (ed.): Handbuch der Physik, Band VIII/1, Strömungsmechanik 1, Springer-Verlag (1959)

    Google Scholar 

  11. Widnall, S.E.: The Structure and Dynamics of Vortex Filaments. Ann. Rev. Fluid Mech. Palo Alto, CA 7, 141–165 (1975)

    Google Scholar 

  12. Bloor, D.: The Enigma of the Aerofoil-Rival Theories in Aerodynamics, 1909–1930. The University of Chicago Press, Chicago and London (2011)

    Google Scholar 

  13. Rizzi, A.: Damped Euler-Equation Method to Compute Transonic Flow Around Wing-Body Configurations. AIAA J. 20(10), 1321–1328 (1982)

    Article  Google Scholar 

  14. Lighthill, J.: Introduction Boundary-Layer Theory. In: Rosenhead, L. (ed.) Laminar Boundary Layers, pp. 46–113. Clarendon Press, Oxford (1963)

    Google Scholar 

  15. Klein, F.: Über die Bildung von Wirbeln in reibungslosen Flüssigkeiten. Zeitschrift für Math. und Physik 59, 259–62 (1910)

    MATH  Google Scholar 

  16. Betz, A.: Wie ensteht ein Wirbel in einer wenig zähen Flüssigkeiten? Die Naturwissenschaften 9, 193–96 (1950)

    Article  Google Scholar 

  17. Rizzi, A.: Three-Dimensional Solutions to the Euler Equations with one Million Grid Points. AIAA Journal 23, 1986–1987 (1985)

    Article  MathSciNet  Google Scholar 

  18. Weis-Fogh, T.: Quick Estimates of Flight Fitness in Hovering Animals, Including Novel Mechanisms for Lift Production. Journal Exp. Biol 59, 169–230 (1973)

    Google Scholar 

  19. Lighthill, J.: On the Weis-Fogh Mechanism of Lift Generation. Journal Fluid Mech. 60, 1–17 (1973)

    Article  MathSciNet  Google Scholar 

  20. Hirschel, E.H.: Basics of Aerothermodynamics. 2nd, revised edition. Springer, Cham Heidelberg New York (2015)

    Google Scholar 

  21. Breitsamter, C.: Nachlaufwirbelsysteme großer Transportflugzeuge - Experimentelle Charakterisierung und Beeinflussung (Wake-Vortex Systems of Large Transport Aircraft—Experimental Characterization and Manipulation). Inaugural Thesis, Technische Universität München, 2007, utzverlag, München, Germany (2007)

    Google Scholar 

  22. Breitsamter, C.: Wake Vortex Characteristics of Transport Aircraft. Progress in Aerospace Sciences 47(1), 89–134 (2011)

    Article  Google Scholar 

  23. Spreiter, J.R., Sacks, A.H.: The Rolling Up of the Trailing Vortex and its Effect on the Downwash Behind Wings. Journal Aero. Sci. 18, 21–32 (1951)

    Article  MathSciNet  Google Scholar 

  24. Sedin, Y.C.J., Grasjo, I., Kullberg, E., Larsson, R.: A Model for Simulation of Flight Passages through Trailing Tip Vortices. Paper ICAS 9(3), 2002–7 (2002)

    Google Scholar 

  25. Crow, S.C.: Stability Theory for a Pair of Trailing Vortices. AIAA Journal 8(12), 2172–2179 (1970)

    Article  Google Scholar 

  26. Hoeijmakers, H.W.M.: Computational Aerodynamics of Ordered Vortex Flows. Doctoral Thesis, TU Delft, Rept. TR diss 1729, Delft, The Netherlands (1989)

    Google Scholar 

  27. Hoeijmakers, H.W.M., Rizzi, A.: Vortex-Fitted Potential and Vortex-Captured Euler Solution for Leading-Edge Vortex Flow. AIAA Journal 23, 1983–1985 (1985)

    Article  Google Scholar 

  28. Rizzi, A.: Multi-cell Vortices Computed in Large-Scale Difference Solution to the Incompressible Euler Equations. Journal Comp. Phys. 77, 207–220 (1988)

    Article  Google Scholar 

  29. Le Moigne, Y.: Adaptive Mesh Refinement and Simulations of Unsteady Delta-Wing Aerodynamics. Doctoral Thesis, KTH Royal Institute of Technology, Rep. TRITA-AVE 2004:17, Stockholm, Sweden (2004)

    Google Scholar 

  30. Hummel, D.: On the Vortex Formation over a Slender Wing at Large Angles of Incidence. In: High Angle of Attack Aerodynamics, Conference Proceedings AGARD CP-247, 15-1–15-17 (1978)

    Google Scholar 

  31. Werlé, H.: Quelques résultats expérimentaux sur les ailes en flèches, aux faibles vitesses, obtenus en tunnel hydrodynamique. La Recherche Aéronautique 41, (1954)

    Google Scholar 

  32. Peckham, D.H., Atkinson, S.A.: Preliminary Results of Low Speed Wind Tunnel Tests on a Gothic Wing of Aspect Ratio 1.0. Report CP-508, Aeronautical Research Council (1957)

    Google Scholar 

  33. Elle, B.J.: An Investigation at Low Speed of the Flow Near the Apex of Thin Delta Wings with Sharp Leading Edges. Reports and Memoranda 3176, Aeronautical Research Council (1958)

    Google Scholar 

  34. Breitsamter, C.: Unsteady Flow Phenomena Associated with Leading-Edge Vortices. Progress in Aerospace Sciences 44(1), 48–65 (2008)

    Article  Google Scholar 

  35. Krause, E.: The Solution to the Problem of Vortex Breakdown. Lecture Notes in Physics Vol 371, Springer-Verlag, Berlin, 35–50 (1990)

    Google Scholar 

  36. Krause, E.: On an Analogy to the Area-Velocity Relation of Gasdynamics in Slender Vortices. Acta Mech. 201, 23–30 (2008)

    Article  Google Scholar 

  37. Krause, E.: Stagnant Vortex Flow. Acta Mech. 209, 345–351 (2010)

    Article  Google Scholar 

  38. Görtz, S.: Realistic Simulations of Delta Wing Aerodynamics Using Novel CFD Methods. Doctoral Thesis, KTH Royal Institute of Technology, Rep TRITA-AVE 2005:01, Stockholm, Sweden (2005)

    Google Scholar 

  39. Jiràsek, A.: Vortex Generator Modeling and its Application to Optimal Control of Airflow in Inlet. Doctoral Thesis, KTH Royal Institute of Technology, Rep TRITA-AVE 2006:66, Stockholm, Sweden (2006)

    Google Scholar 

  40. Hirschel, E.H., Cousteix, J., Kordulla, W.: Three-Dimensional Attached Viscous Flow. Springer, Berlin Heidelberg (2014)

    Google Scholar 

  41. Campbell, J.F., Chambers, J.R.: Patterns in the Sky–Natural Visualizations in Aircraft Flow Fields. NASA SP-514 (1994)

    Google Scholar 

  42. Guillaume, M., Gehri, A., Stephani, P., Vos, J.B., Mandanis, G.: F/A-18 Vertical Tail Buffeting Calculation Using Unsteady Fluid Structure Interaction. Aero J., Vol 115, No. 1166 (2011)

    Google Scholar 

  43. Vos, J.B., Charbonnier, D., Ludwig, T., Merazzi, S., Gehri, A., Stephani, P.: Recent Developments on Fluid Structure Interaction Using the Navier-Stokes Multi Block (NSMB) CFD Solver. AIAA-Paper 2017–4458, (2017)

    Google Scholar 

  44. Breitsamter, C.: Turbulente Strömungsstrukturen an Flugzeugkonfigurationen mit Vorderkantenwirbeln. (Turbulent Flow Structures at Aircraft Configurations with Leading-Edges Vortices). Doctoral Thesis, Technische Universität München, 1996, utzverlag, München, Germany (1997)

    Google Scholar 

  45. Mabey, D.G.: Some Aspects of Dynamic Loads Due to Flow Separation. AGARD-R-750 (1988)

    Google Scholar 

  46. Luber, W., Becker, J., Sensburg, O.: The Impact of Dynamic Loads on the Design of Military Aircraft. AGARD-R-815, 8-1–8-27 (1996)

    Google Scholar 

  47. Breitsamter, C., Schmid, A.: Airbrake Induced Fin Buffet Loads on Figther Aircraft. Journal of Aircraft 45(5), 1619–1630 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernst Heinrich Hirschel .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hirschel, E.H., Rizzi, A., Breitsamter, C., Staudacher, W. (2021). Elements of Vortex Theory. In: Separated and Vortical Flow in Aircraft Wing Aerodynamics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-61328-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-61328-3_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-61326-9

  • Online ISBN: 978-3-662-61328-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics