Skip to main content

Selected Flow Problems of Small Aspect-Ratio Delta-Type Wings

  • Chapter
  • First Online:
Separated and Vortical Flow in Aircraft Wing Aerodynamics

Abstract

The main topic of this book are the basics of separated and vortical flow in aircraft wing aerodynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Vortex breakdown is also denoted as vortex bursting.

  2. 2.

    The suction-pressure concept goes back to the application of circulation theory (Model 4). Consider an airfoil at angle of attack. The only force is the lift force L, normal to the freestream direction. Its component in x-direction of the airfoil is \(P_x =\) \(-\) \(L\) \(\,sin\alpha =\) S, i.e., the suction force, which is forward directed [9]. It is attributed to the low pressure—the suction pressure—due to the flow around the leading edge of the airfoil, which is a high-speed flow. The higher the angle of attack, the larger is S. In our context it regards the flow around the swept leading edges of delta wings and the resulting non-linear lift due to the lee-side vortex system.

  3. 3.

    The specific excess power is the power surplus needed/available for the acceleration of the flight vehicle or for its climbing performance.

  4. 4.

    We note that detailed investigations of the ensuing flow changes with discrete numerical methods (Model 10 and 11 of Table 1.3) would be desirable, at least from an academic point of view.

  5. 5.

    Note that at the lower (windward) side the primary attachment line always is assumed to be located at the middle of the wing, see the discussion in Sects. 7.4.3 and 7.5. Note further that focus points are nodal points and therefore denoted with N, instead of F, as for instance in Sect. 7.4.3.

References

  1. Gursul, I., Wang, Z., Vardaki, E.: Review of flow control mechanisms of leading-edge vortices. Prog. Aerosp. Sci. 43(3), 246–270 (2007)

    Article  Google Scholar 

  2. Staudacher, W.: Die Beeinflussung von Vorderkantenwirbelsystemen schlanker Tragflügel (The Manipulation of Leading-Edge Vortex Systems of Slender Wings). Doctoral Thesis, University Stuttgart, Germany (1992)

    Google Scholar 

  3. Gottmann, Th., Groß, U., Staudacher, W.: Flügel kleiner Streckung, Teil 1: Grundsatzuntersuchungen, Band 1: Analysebericht. MBB/LKE127/S/R/1563 (1985)

    Google Scholar 

  4. Shortal, J.A., Maggin, B.: Effect of Sweepback and Aspect Ratio on Longitudinal Stability Characteristics of Wings at Low Speeds. NACA TN-1093 (1985)

    Google Scholar 

  5. Hirschel, E.H., Weiland, C.: Selected Aerothermodynamic Design Problems of Hypersonic Flight Vehicles. Progress in Aeronautics and Astronautics, AIAA, Reston, VA, vol. 229. Springer, Berlin, Heidelberg (2009)

    Google Scholar 

  6. Staudacher, W.: Zum Einfluss von Flugelgrundrissmodifikationen auf die aerodynamischen Leistungen von Kampflugzeugen. Jahrestagung DGLR/OGFT, Innsbruck, Austria, DGLR Nr. 73–71, 24–28 (1973)

    Google Scholar 

  7. Polhamus, E.C.: A Concept of the Vortex Lift of Sharp Edge Delta Wings, Based on a Leading-Edge Suction Analogy. NASA TN D-3767 (1966)

    Google Scholar 

  8. Polhamus, E.C.: Application of the Leading-Edge Suction Analogy of Vortex Lift to the Drag Due to Lift of Sharp-Edged Delta Wings. NASA TN D-4739 (1968)

    Google Scholar 

  9. Schlichting, H., Truckenbrodt, E.: Aerodynamik des Flugzeuges, vol. 1 and 2, Springer, Berlin/Gättingen/Heidelberg, 1959, also: Aerodynamics of the Aeroplane, 2nd edn. (revised). McGraw Hill Higher Education, New York (1979)

    Google Scholar 

  10. Staudacher, W.: Abschätzung des Reynolds-Zahl-Einflusses auf den induzierten Widerstand schlanker Flügel. MBB-UFE122-Aero-Mt-399 (1980)

    Google Scholar 

  11. Henderson, W.P.: Effects of Wing Leading Egde Radius and Reynoldy Number on Longitudinal Aerodynamic Characteristics of Highly Swept Wing-Body Configurations at Subsonic Speeds. NASA TN D-8361 (1976)

    Google Scholar 

  12. Nangia, R.K., Miller, A.S.: Vortex flow dilemmas and control of wing planforms for high speeds. In: Proceedings RTO AVT Symposium on Vortex Flow and High Angle of Attack Aerodynamics. Loen, Norway, May 7 to 11, 2001. RTO-MP-069, Paper Nr. 9 (2002)

    Google Scholar 

  13. Brandon, J.M., Hallissy, J.B., Brown, P.W., Lamar, J.E.: In-flight flow visualization results of the F-106B with a vortex flap. In: Proceedings RTO AVT Symposium on Vortex Flow and High Angle of Attack Aerodynamics. Loen, Norway, May 7 to 11, 2001. RTO-MP-043, Paper Nr. 43 (2002)

    Google Scholar 

  14. Frink, N.T., Huffman, J.K., Johnson Jr., T.D.: Vortex Flap Flow Reattachment Line and Subsonic Longitudinal Aerodynamic Data on 50\(^{\circ }\) to 74\(^{\circ }\) Delta Wings on Common Fuslage. NASA TM 84618 (1983)

    Google Scholar 

  15. Hitzel, S.M., Osterhuber, R.: Enhanced maneuverability of a delta-canard combat aircraft by vortex flow control. J. Aircraft 55(3), 1–13 (2017)

    Google Scholar 

  16. Erickson, G.E., Gilbert, W.P.: Experimental Investigation of Forebody and Wing Leading-Edge Vortex Interactions at High Angles of Attack. AGARD-CP-342, 11-1–11-28 (1983)

    Google Scholar 

  17. Malcolm, G.N., Skow, A.M.: Enhanced Controllability Through Vortex Manipulation on Fighter Aircraft at High Angles of Attack. AIAA-Paper 86–277 (1986)

    Google Scholar 

  18. Breitsamter, C.: Strake effects on the turbulent fin flowfield of a high-performance fighter aircraft. In: W. Nitsche, H.-J. Heinemann, R. Hilbig (eds.), New Results in Numerical and Experimental Fluid Mechanics II. Contributions to the 11th AG STAB/DGLR Symposium Berlin, Germany 1998. Notes on Numerical Fluid Mechanics, vol. 72, pp. 69–76. Vieweg-Verlag, Braunchweig, Wiesbaden (1999)

    Google Scholar 

  19. Cornish, J.J.: High Lift Applications of Spanwise Blowing. 7th ICAS Congress, ICAS Paper 70-09 (1970)

    Google Scholar 

  20. Dixon, C.J.: Lift and Control Augmentation by Spanwise Blowing Over Trailing Edge Flaps and Control Surfaces. AIAA-Paper 72–781 (1972)

    Google Scholar 

  21. Staudacher, W.: Effects, Limits and Limitations of Spanwise Blowing. AGARD-CP-534, 26-1–26-10 (1993)

    Google Scholar 

  22. Staudacher, W.: Flügel mit kontrollierter Abläsung. DGLR Nr. 77–028, 24–28 (1977)

    Google Scholar 

  23. Staudacher, W., Egle, S., Boddener, W., Wulf, R.: Grundsätzliche Untersuchungen über spannweitiges Blasen und stabilisierten Wirbelauftrieb. MBB, Ottobrunn, I.B. 77-125/UFE 1320 (1977)

    Google Scholar 

  24. Staudacher, W.: Interference Effects of Concentrated Blowing and Vortices on a Typical Fighter Configuration. AGARD-CP-285, 19-1–19-13 (1980)

    Google Scholar 

  25. Staudacher, W.: Influence of Jet-Location on the Efficiency of Spanwise Blowing. 12th ICAS Congress, ICAS Paper 13-02 (1980)

    Google Scholar 

  26. Staudacher, W.: Verbesserung der aerodynamischen Leistungen durch konzentriertes Ausblasen. MBB, Ottobrunn, FE 122 /S/R 1499 (1980)

    Google Scholar 

  27. Gottmann, Th., Hünecke, K., Staudacher, W.: Einfluss des Spannweitigen Blasens auf die Aerodynamischen Leistungen. Handbuch der Luftfahrttechnik (LTH) (1986)

    Google Scholar 

  28. Huffman, J.K., Hahne, D.E., Johnson Jr., T.D.: Aerodynamic effect of distributed spanwise blowing on a fighter configuration. J. Aircraft 24(10), 673–679 (1987)

    Article  Google Scholar 

  29. N.N.: Computational and experimental assessment of jets in cross flow. In: Proceedings of the AGARD Symmposium, Winchester, UK, April 19–22, 1993. AGARD-CP-534 (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernst Heinrich Hirschel .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hirschel, E.H., Rizzi, A., Breitsamter, C., Staudacher, W. (2021). Selected Flow Problems of Small Aspect-Ratio Delta-Type Wings. In: Separated and Vortical Flow in Aircraft Wing Aerodynamics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-61328-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-61328-3_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-61326-9

  • Online ISBN: 978-3-662-61328-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics