Skip to main content

Abstract

Vortex layers and vortices, although not occupying much space in the flow field around and behind an aircraft, can be seen as “the sinews and muscles of the fluid motion”, as D. Küchemann was putting it [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In the context of flow singularities the singularity of the Blasius solution at the “leading edge” (\(x = 0\)) of the flat plate with zero thickness should be mentioned. In the hypothetical reality of such a flat plate—the zero thickness of course cannot be realized in an experiment—no singularity exists. However, a very small initial region is present, where the assumption of continuum flow is not valid. We point in this regard to the discussion of—although hypersonic—leading-edge flow in [32].

  2. 2.

    In Chap. 2 we consider some relevant properties of boundary layers, because they are what separates from a body surface.

  3. 3.

    In these two kinds of separation always two boundary layers are involved in the separation process. This situation is the rule, but there are singular points at the body surface where the situation is different, Chap. 7.

  4. 4.

    The case of a single separation bubble—example in Fig. 7.2a in Sect. 7.1.4—is found, if a suction peak is present shortly behind the airfoil’s nose (peaky pressure distribution) and laminar-turbulent transition happens across this bubble (bubble transition) [14].

  5. 5.

    Trailing vortices and tip vortices often are mixed up. They are separate phenomena. They only in a sense fall together in Prandtl’s lifting-line model.

  6. 6.

    The appearance of the lee-side vortex pair depends not only on the angle of attack, but also on the leading-edge sweep and the free-stream Mach number, Sect. 10.2.

  7. 7.

    The reader should note that we do not treat fuselage-flow problems in this book.

  8. 8.

    This is one of three criteria discussed, for instance, by E.A. Eichelbrenner [38].

  9. 9.

    We give only a very brief sketch of the developments. The interested reader will find detailed material in, for instance, [39, 40].

  10. 10.

    Below we will see that also compressible potential flow is possible.

  11. 11.

    The reader should note that we do not use the term strength for the vorticity integral as Lighthill does. We call that integral the intensity of the boundary layer or vortex layer, and more generally, the local vorticity content of a shear layer.

  12. 12.

    The drag of the airfoil then is a purely viscous drag, composed of the skin-friction drag and the viscosity-effects induced pressure or form drag due to the displacement properties of the boundary layers at the upper and the lower side of the airfoil, Sect. 2.4. In supercritical compressible flow other effects come into play, also Sect. 2.4.

  13. 13.

    Actually this equation is derived from the continuity equation. For a generalized derivation see, e.g., [49].

  14. 14.

    An ideal discrete modeled Euler solution (Model 7) would not have such diffusive properties.

References

  1. Küchemann, D.: Report on the IUTAM symposium on concentrated vortex motion in fluids. J. Fluid Mech. 21, 1–20 (1965)

    Google Scholar 

  2. Lighthill, J.: An Informal Introduction to Theoretical Fluid Mechanics. Clarendon Press, Oxford (1986)

    MATH  Google Scholar 

  3. Lugt, H.J.: Introduction to Vortex Theory. Vortex Flow Press, Potomac (1996)

    Google Scholar 

  4. Wu, J.-Z., Ma, H.-Y., Zhou, M.-D.: Vorticity and Vortex Dynamics. Springer, Berlin (2006)

    Book  Google Scholar 

  5. Peake, D.J., Tobak, M.: Three-dimensional interactions and vortical flows with emphasis on high speeds. NASA TM 81169 (1980) and AGARDograph 252 (1980)

    Google Scholar 

  6. Rom, J.: High Angle of Attack Aerodynamics. Springer, Heidelberg (1992)

    Book  Google Scholar 

  7. Délery, J.: Three-Dimensional Separated Flow Topology. ISTE, London and Wiley, Hoboken (2013)

    Google Scholar 

  8. N.N.: Flow separation. In: Proceedings of AGARD Symposion, Göttingen, Germany, May 27–30, 1975. AGARD-CP-168 (1975)

    Google Scholar 

  9. N.N.: Aerodynamics of vortical type flows in three dimensions. In: Proceedings of AGARD Symposion, Rotterdam, The Netherlands, April 25–28, 1983. AGARD-CP-342 (1983)

    Google Scholar 

  10. Kozlov, V.V., Dovgal, A.V.: Separated flows and jets. In: Proceedings of IUTAM-Symposium, Novosibirsk, USSR, July 9–10, 1990. Springer, Berlin (1991)

    Google Scholar 

  11. White, F.M.: Viscous Fluid Flow, 3rd edn, revised. McGraw-Hill Series in Mechanical Engineering (2005)

    Google Scholar 

  12. Cebeci, T., Cousteix, J.: Modeling and Computation of Boundary-Layer Flows, 2nd edn. Horizons Publishing, Long Beach and Springer, Berlin (2005)

    Google Scholar 

  13. Schlichting, H., Gersten, K.: Boundary Layer Theory, 8th edn. Springer, Berlin (2000)

    Book  Google Scholar 

  14. Hirschel, E.H., Cousteix, J., Kordulla, W.: Three-Dimensional Attached Viscous Flow. Springer, Berlin (2014)

    Book  Google Scholar 

  15. Schlichting, H., Truckenbrodt, E.: Aerodynamik des Flugzeuges, vol. 1 and 2. Springer, Berlin (1959), also: Aerodynamics of the Aeroplane, 2nd edn (revised). McGraw Hill Higher Education, New York (1979)

    Google Scholar 

  16. Küchemann, D.: The Aerodynamic Design of Aircraft. Pergamon Press, Oxford: also AIAA Education Series, p. 2012. AIAA, Reston (1978)

    Google Scholar 

  17. Anderson Jr., J.D.: Fundamentals of Aerodynamics, 5th edn. McGraw Hill, New York (2011)

    Google Scholar 

  18. Drela, M.: Flight Vehicle Aerodynamics. The MIT Press, Cambridge (2014)

    Google Scholar 

  19. Rossow, C.-C., Wolf, K., Horst, P. (eds.): Handbuch der Luftfahrzeugtechnik. Carl Hanser Verlag, München (2014)

    Google Scholar 

  20. Rizzi, A., Oppelstrup, J.: Aircraft Aerodynamic Design with Computational Software. Cambridge University Press, Cambridge (2020)

    Google Scholar 

  21. Körner, H.: Einleitung. In: Rossow, C.-C., Wolf, K., Horst, P. (eds.) Handbuch der Luftfahrzeugtechnik, pp. 25–43. Carl Hanser Verlag, München (2014)

    Google Scholar 

  22. Jefferys, D.: Personal communication (2019)

    Google Scholar 

  23. Breitsamter, C.: Nachlaufwirbelsysteme großer Transportflugzeuge - Experimentelle Charakterisierung und Beeinflussung (Wake-Vortex Systems of Large Transport Aircraft—Experimental Characterization and Manipulation). Inaugural thesis, Technische Universität München, 2007, utzverlag, München, Germany (2007)

    Google Scholar 

  24. Sachs, G.: Flugmechanik. In: Rossow, C.-C., Wolf, K., Horst, P. (eds.) Handbuch der Luftfahrzeugtechnik, pp. 255–309. Carl Hanser Verlag, München (2014)

    Google Scholar 

  25. Krämer, E.: Kampfflugzeuge. In: Rossow, C.-C., Wolf, K., Horst, P. (eds.) Handbuch der Luftfahrzeugtechnik, pp. 113–150. Carl Hanser Verlag, München (2014)

    Google Scholar 

  26. Hitzel, S.M.: Personal communication (2019)

    Google Scholar 

  27. With permission. https://uhdwallpapers.org/wallpaper/us-navy-502-aircraft44559/(2019)

  28. Prandtl, L.:Über Flüssigkeitsbewegung bei sehr kleiner Reibung. In: Proceedings 3rd International Mathematicians Congress, Heidelberg, pp. 484–491 (1904)

    Google Scholar 

  29. Goldstein, S.: Fluid mechanics in the first half of the century. Annu. Rev. Fluid Mech. Palo Alto 1, 1–28 (1969)

    Google Scholar 

  30. Eckert, M.: The Dawn of Fluid Dynamics. Wiley-VCH, Weinheim (2006)

    Google Scholar 

  31. Goldstein, S.: On laminar boundary-layer flow near a position of separation. Q. J. Mech. Appl. Math. 1, 43–69 (1948)

    Google Scholar 

  32. Hirschel, E.H.: Basics of Aerothermodynamics, 2nd edn, revised. Springer, Cham (2015)

    Google Scholar 

  33. Oswatitsch, K.: Die Ablösebedingungen von Grenzschichten. In: Görtler H. (ed.), Proceedings of IUTAM Symposium on Boundary Layer Research, Freiburg, Germany, 1957. Springer, Berlin, pp. 357–367 (1958). Also: The Conditions for the Separation of Boundary Layers. In: Schneider, W., Platzer, M. (eds.) Contributions to the Development of Gasdynamics, pp. 6–18. Vieweg, Braunschweig Wiesbaden, Germany (1980)

    Google Scholar 

  34. Elsenaar, A.: Vortex formation and flow separation: the beauty and the beast in aerodynamics. Aeronaut. J. 615–633 (2000)

    Google Scholar 

  35. Hirschel, E.H.: On the creation of vorticity and entropy in the solution of the Euler equations for lifting wings. MBB-LKE122-AERO-MT-716, Ottobrunn, Germany (1985)

    Google Scholar 

  36. Hirschel, E.H.: Evaluation of results of boundary-layer calculations with regard to design aerodynamics. AGARD R-741, 5-1–5-29 (1986)

    Google Scholar 

  37. Eberle, A., Rizzi, A., Hirschel, E.H.: Numerical Solutions of the Euler Equations for Steady Flow Problems. Notes on Numerical Fluid Mechanics, vol. 34. Vieweg, Braunschweig Wiesbaden (1992)

    Google Scholar 

  38. Eichelbrenner, E.A.: Three-dimensional boundary layers. Annu. Rev. Fluid Mech. Palo Alto 5, 339–360 (1973)

    Google Scholar 

  39. von Kármán, T.: Aerodynamics—Selected Topics in the Light of Their Historical Development. Cornell University Press, Ithaka (1954)

    Google Scholar 

  40. Rizzi, A., Hirschel, E.H.: General developments of numerical fluid mechanics until the middle of the 20th century. In: Hirschel, E.H., Krause, E. (eds.) 100 Volumes of Notes on Numerical Fluid Mechanics and Multidisciplinary Design, NNFM100, pp. 61–76. Springer, Berlin (2009)

    Google Scholar 

  41. Bloor, D.: The Enigma of the Aerofoil-Rival Theories in Aerodynamics, 1909–1930. The University of Chicago Press, Chicago (2011)

    Book  Google Scholar 

  42. Kutta, M.W.: Auftriebskräfte in strömenden Flüssigkeiten. Illus. Aeronaut. Mitt. 6, 133–135 (1902)

    Google Scholar 

  43. Joukowski, N.: Über die Konturen der Tragflächen der Drachenflieger. Z. Flugtech. Motorluftschiffahrt 1, 281–284 (1910); 3, 81–86 (1912)

    Google Scholar 

  44. Lanchester, F.W.: Aerodynamics, London (1907) and Aerodonetics, London (1908)

    Google Scholar 

  45. Prandtl, L.: Tragflügeltheorie, I. und II. Mitteilung. Nachrichten der Kgl. Ges. Wiss. Göttingen, Math.-Phys. Klasse, 451–477 (1918) and 107–137 (1919)

    Google Scholar 

  46. Lighthill, M.J.: Introduction boundary-layer theory. In: Rosenhead, L. (ed.) Laminar Boundary Layers, pp. 46–113. Clarendon Press, Oxford (1963)

    Google Scholar 

  47. Hirschel, E.H.: Vortex flows: some general properties, and modelling, configurational and manipulation aspects. AIAA-Paper 96–2514 (1996)

    Google Scholar 

  48. Hess, J.L.: Panel Methods in Computational Fluid Dynamics. Annu. Rev. Fluid Mech. Palo Alto 22, 255–274 (1990)

    Article  Google Scholar 

  49. Weiland, C.: A comparison of potential- and Euler-methods for the calculation of 3-D supersonic flows past wings. In: M. Pandolfi (ed.), Proceedings of the 5th GAMM-Conference on Numerical Methods in Fluid Mechanics, Rome, October 5–7, 1983. Notes on Numerical Fluid Mechanics, vol. 7, pp. 362–369. Vieweg-Verlag, Braunchweig Wiesbaden (1983)

    Google Scholar 

  50. Pulliam, T.H.: A computational challenge: Euler solution for ellipses. AIAA-Paper 89–0469 (1989)

    Google Scholar 

  51. Vos, R., Farokhi, S.: Introduction to Transonic Aerodynamics. Springer Science+Business Media, Dordrecht (2015)

    Book  Google Scholar 

  52. Leschziner, M.: Statistical Turbulence Modelling for Fluid Dynamics—Demystified. An Introductory Text for Graduate Engineering Students. Imperial College Press, London (2016). ISBN 978-1-78326-660-9

    Google Scholar 

  53. Durbin, P.A.: Some recent developments in turbulence closure modelling. Annu. Rev. Fluid Mech. Palo Alto 50, 77–103 (2018)

    Google Scholar 

  54. Bush, R.H., Chyczewski, T.S., Duraisamy, H., Eisfeld, B., Rumsey, C.L., Smith, B.R.: Recommendations for future efforts in RANS modeling and simulation. AIAA Paper 2019–0317, (2019)

    Google Scholar 

  55. Rizzi, A., Luckring, J.M.: Evolution and use of CFD for separated flow simulations relevant to military aircraft. Paper presented at the AVT-307 Symposium on Separated Flow: Prediction, Measurement and Assessment for Air and Sea Vehicles, Trondheim, Norway 07–09 October 2019. STO-MP-AVT-307-11 (2019)

    Google Scholar 

  56. Spalart, P.R.: Detached-eddy simulation. Annu. Rev. Fluid Mech. Palo Alto 41, 181–202 (2009)

    Google Scholar 

  57. Mockett, C., Haase, W., Schwamborn, D. (eds.): Go4Hybrid: Grey Area Mitigation for Hybrid RANS-LES Methods. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 134. Springer, Cham (2018)

    Google Scholar 

  58. Bier, N., Keye, S., Rohlmann, D.: Advanced design approach for a high-lift wind tunnel model based on flight data. In: Radespiel, R., Niehuis, R., Kroll, N., Behrends, K. (eds.) Advances in Simulation of Wing and Nacelle Stall. Proceedings of Closing Symposium of the DFG Research Unit FOR 1066, Dez. 1–2, 2014, Braunschweig, Germany. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, NNFM131, pp. 337–350. Springer International Publishing Switzerland, Cham (2016)

    Google Scholar 

  59. Oberkampf, W.L., Trucano, T.G.: Verification and validation in computational fluid dynamics. Prog. Aerosp. Sci. 38, 181–274 (2002)

    Google Scholar 

  60. Luckring, J.M., Boelens, O.J.: A unit-problem investigation of blunt leading-edge separation motivated by AVT-161 SACCON Research. RTO-MP-AVT-189, 27-1–27-27 (2011)

    Google Scholar 

  61. Tomac, M.: Towards automated CFD for engineering methods in aircraft design. Doctoral thesis, KTH Royal Institute of Technology, Rep TRITA-AVE 2014:11, Stockholm, Sweden (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernst Heinrich Hirschel .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hirschel, E.H., Rizzi, A., Breitsamter, C., Staudacher, W. (2021). Introduction. In: Separated and Vortical Flow in Aircraft Wing Aerodynamics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-61328-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-61328-3_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-61326-9

  • Online ISBN: 978-3-662-61328-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics